首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  国内免费   2篇
航空   14篇
航天技术   30篇
航天   3篇
  2021年   1篇
  2019年   2篇
  2016年   2篇
  2014年   8篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   12篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有47条查询结果,搜索用时 46 毫秒
1.
The calibration and validation team of the Korea Aerospace Research Institute has calibrated and validated the image data of the KOMPSAT-2 since the launch of KOMPSAT-2 on July 28, 2006. The asymmetric phenomenon of the point spread function of the KOMPSAT-2 image data is evident in both the along and the across direction, most likely because KOMPSAT-2 has a 1 m ground sample distance high-resolution camera with time-delayed integration. Furthermore, because KOMPSAT-2 is in space, the KOMPSAT-2 image data has been corrected with good results by means of modulation transfer function compensation.  相似文献   
2.
3.
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented.  相似文献   
4.
The Scientific Balloon Center of ISAS/JAXA has carried out two balloon campaigns at Sanriku, Iwate, Japan every year. Ten to twelve balloon vehicles are launched annually for scientific and engineering experiments. Since 2005, a Brazilian balloon campaign has also been conducted in cooperation with INPE. In the 2006 Brazilian campaign, large and heavy payloads up to 1500 kg for astronomy will be launched. New generation balloons, such as super-pressure balloons and high-altitude balloons with ultra-thin films, are being developed. The current status and prospect of the Japanese scientific ballooning are discussed.  相似文献   
5.
Solar cells suitable for the space environment must combine high-efficiency, high energy density, and radiation hardness in a manufacturable design. As improvement in one performance parameter usually results in degradation in one or more of the remaining parameters, careful optimization is required to enhance overall performance. The ultra triple-junction cell developed builds upon the established success of the fully qualified improved triple-junction cell currently in production. In the ultra triple-junction cell configuration, improved robustness and efficiency after radiation exposure augment a cell design expected to deliver 28% beginning-of-life efficiency in production.  相似文献   
6.
We present a Python-based data reduction pipeline package (PLP) for the Immersion GRating INfrared Spectrograph (IGRINS), an instrument that covers the complete H- and K-bands in one exposure with a spectral resolving power of 40,000. The reduction steps carried out by the PLP include flat-fielding, background removal, order extraction, distortion correction, wavelength calibration, and telluric correction using spectra of A type standard stars. As the spectrograph has no moving parts, the PLP automatically reduces the data using predefined functions for the processes of order extraction, distortion correction, and wavelength calibration. Before the telluric correction of the target spectra, the intrinsic hydrogen absorption features of the standard A star are removed with a Gaussian fitting algorithm. The final result is the flux of the target as a function of wavelength. Users can customize the predefined functions for the extraction of the spectrum from the echellogram and adjust the parameters for the fitting functions for the spectra of celestial objects, using “fine-tuning” options, as necessary. Presently, the PLP produces the best results for point-source targets.  相似文献   
7.
Spaceborne GPS receivers are used for real-time navigation by most low Earth orbit (LEO) satellites. In general, the position and velocity accuracy of GPS navigation solutions without a dynamic filter are 25 m (1σ) and 0.5 m/s (1σ), respectively. However, GPS navigation solutions, which consist of position, velocity, and GPS receiver clock bias, have many abnormal excursions from the normal error range for space operation. These excursions lessen the accuracy of attitude control and onboard time synchronization. In this research, a new onboard orbit determination algorithm designed with the unscented Kalman filter (UKF) was developed to improve the performance. Because the UKF is able to obtain the posterior mean and covariance accurately by using the second-order Taylor series expansion through the sampled sigma points that are propagated by using the true nonlinear system, its performance can be better than that of the extended Kalman filter (EKF), which uses the linearized state transition matrix to predict the covariance. The dynamic models for orbit propagation applied perturbations due to the 40 × 40 geo-potential, the gravity of the Sun and Moon, solar radiation pressure, and atmospheric drag. The 7(8)th-order Runge–Kutta numerical integration was applied for orbit propagation. Two types of observations, navigation solutions and C/A code pseudorange, can be used at the user’s discretion. The performances of the onboard orbit determination were verified using real GPS data of the CHAMP and KOMPSAT-2 satellites. The results of the orbit determination were compared with the precision orbit ephemeris (POE) of the CHAMP and KOMPSAT-2 satellites.  相似文献   
8.
9.
This paper presents a new approach to noise covariances estimation for a linear, time-invariant, stochastic system with constant but unknown bias states. The system is supposed to satisfy controllable/observable conditions without bias states. Based on a restructured data representation, the covariance of a new variable that consists of measurement vectors is expressed as a linear combination of unknown parameters. Noise covariances are then estimated by employing a recursive least-squares algorithm. The proposed method requires no a priori estimates of noise covariances, provides consistent estimates, and can also be applied when the relationship between bias states and other states is unknown. The method has been applied to strapdown inertial navigation system initial alignment. Simulation results indicate a satisfactory performance of the proposed method  相似文献   
10.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) is configured with a solenoidal superconducting magnet and a suite of precision particle detectors, including time-of-flight hodoscopes based on plastic scintillators, a silica-aerogel Cherenkov detector, and a high resolution tracking system with a central jet-type drift chamber. The charges of incident particles are determined from energy losses in the scintillators. Their magnetic rigidities (momentum/charge) are measured by reconstructing each particle trajectory in the magnetic field, and their velocities are obtained by using the time-of-flight system. Together, these measurements can accurately identify helium isotopes among the incoming cosmic-ray helium nuclei up to energies in the GeV per nucleon region. The BESS-Polar I instrument flew for 8.5 days over Antarctica from December 13th to December 21st, 2004. Its long-duration flight and large geometric acceptance allow the time variations of isotopic fluxes to be studied for the first time. The time variations of helium isotope fluxes are presented here for rigidities from 1.2 to 2.5 GV and results are compared to previously reported proton data and neutron monitor data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号