首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
航空   2篇
航天技术   12篇
航天   1篇
  2021年   1篇
  2020年   1篇
  2013年   2篇
  2008年   1篇
  2007年   1篇
  2003年   2篇
  2001年   2篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Plant seedlings exhibit automorphogenesis on clinostats. The occurrence of automorphogenesis was confirmed under microgravity in Space Shuttle STS-95 flight. Rice coleoptiles showed an inclination toward the caryopsis in the basal region and a spontaneous curvature in the same adaxial direction in the elongating region both on a three-dimensional (3-D) clinostat and in space. Both rice roots and Arabidopsis hypocotyls also showed a similar morphology in space and on the 3-D clinostat. In rice coleoptiles, the mechanisms inducing such an automorphic curvature were studied. The faster-expanding convex side of rice coleoptiles showed a higher extensibility of the cell wall than the opposite side. Also, in the convex side, the cell wall thickness was smaller, the turnover of the matrix polysaccharides was more active, and the microtubules oriented more transversely than the concave side, and these differences appear to be causes of the curvature. When rice coleoptiles grown on the 3-D clinostat were placed horizontally, the gravitropic curvature was delayed as compared with control coleoptiles. In clinostatted coleoptiles, the corresponding suppression of the amyloplast development was also observed. Similar results were obtained in Arabidopsis hypocotyls. Thus, the induction of automorphogenesis and a concomitant decrease in graviresponsiveness occurred in plant shoots grown under microgravity conditions.  相似文献   
2.
Airtight vessels have various advantages for space experiments. However, Arabidopsis thaliana plants scarcely produced seeds when grown in such vessels. The mechanism by which reproductive growth is inhibited in airtight vessels was studied. The length of the flower stalk was shorter when the plants were grown in airtight vessels. Thus, there was a possibility that the inhibition of reproductive growth was due to the inhibition of vegetative growth. However, even when the plants which has grown under non-airtight conditions and has reached to the flowering stage were transferred to airtight vessels, silique formation was inhibited, suggesting that the airtight environment directly influences reproductive growth. In airtight vessels, anther dehiscence was inhibited, which appears to be the cause of inhibition of silique formation and seed development. Reproductive growth recovered when silica gel was added to the vessels. These results suggest that in airtight vessels, high humidity causes a suppression of anther dehiscence, resulting in the inhibition of reproductive growth. Therefore, the control of humidity by ventilation should be taken into consideration in designing a growth chamber for space experiments.  相似文献   
3.
Activity of auxin polar transport in inflorescence axes of Arabidopsis thaliana grown under simulated microgravity conditions was studied in relation to the growth and development. Seeds were germinated and allowed to grow on an agar medium in test tubes on a horizontal clinostat. Horizontal clinostat rotation substantially reduced the growth of inflorescence axes and the productivity of seeds of Arabidopsis thaliana (ecotypes Landsberg erecta and Columbia), although it little affected seed germination, development of rosette leaves and flowering. The activity of auxin polar transport in inflorescence axes decreased when Arabidopsis plants were grown on a horizontal clinostat from germination stage, being ca. 60% of 1 g control. On the other hand, the auxin polar transport in inflorescence axes of Arabidopsis grown in 1 g conditions was not affected when the segments were exposed to various gravistimuli, including 3-dimensional clinorotation, during transport experiments. Pin-formed mutant of Arabidopsis, having a unique structure of the inflorescence axis with no flower and extremely low levels of the activity of auxin polar transport in inflorescence axes and endogenous auxin, did not continue its vegetative growth under clinostat rotation. These facts suggest that the development of the system of auxin polar transport in Arabidopsis is affected by microgravity, resulting in the inhibition of growth and development, especially during reproductive growth.  相似文献   
4.
Growth of dark-grown Arabidopsis hypocotyls was suppressed under hypergravity conditions (300 g), or was stimulated under microgravity conditions in space (Space Shuttle STS-95). The mechanical extensibility of cell walls decreased and increased under hypergravity and microgravity conditions, respectively. The amounts of cell wall polysaccharides (pectin, hemicellulose-I, hemicellulose-II and cellulose) per unit length of hypocotyls increased under hypergravity conditions, and decreased under microgravity conditions. The amount and the molecular mass of xyloglucans also increased under the hypergravity conditions, while those decreased under microgravity conditions. The activity of xyloglucan-degrading enzymes extracted from hypocotyl cell walls decreased and increased under hypergravity and microgravity conditions, respectively. These results indicate that the amount and the molecular mass of xyloglucans are affected by the magnitude of gravity and that such changes are caused by changes in xyloglucan-degrading activity. Modifications of xyloglucan metabolism as well as the thickness of cell walls by gravity stimulus may be the primary event determining the cell wall extensibility, thereby regulating the growth rate of Arabidopsis hypocotyls.  相似文献   
5.
The life of plants and other organisms is governed by the constant force of gravity on earth. The mechanism of graviperception, signal transduction, and gravireaction is one of the major themes in space biology. When gravity controls each step of the life cycle such as growth and development, it does not work alone but operates with the interaction of other environmental factors. In order to understand the role of gravity in regulation of the life cycle, such interactions also should be clarified. Under microgravity conditions in space, various changes are brought about in the process of growth and development. Some changes would be advantageous to organisms, but others would be unfavorable. For overcoming such disadvantages, it may be required to exploit some other environmental factors which substitute for gravity in some properties. In terrestrial plants, gravity can be replaced by light under certain conditions. The gravity-substituting factors may play a principal role in future space development.  相似文献   
6.
The effects of hypergravity on growth and osmoregulation were examined in dark-grown azuki bean epicotyls. Elongation growth of epicotyls was promptly suppressed by hypergravity at 300g. On the contrary, the increase in fresh weight of epicotyls during incubation was not suppressed by hypergravity at 300g at least up to 6 h. Also, the level of total osmotic solutes increased during epicotyl growth for 6 h, which was not affected by hypergravity. These results suggest that azuki bean epicotyls are capable of maintaining osmoregulation even under 300g conditions for a short period. On the other hand, the increase in fresh weight of epicotyls was suppressed, in addition to suppression of elongation growth, when seedlings were treated with 300g for 24 h. The increase in level of total osmotic solutes was also inhibited by 24 h hypergravity treatment, which was accounted by the reduced levels of organic solutes, such as sugars and amino acids. Furthermore, the dry weight of seeds decreased during incubation for 24 h, but the decrease was inhibited by hypergravity at 300g. Hypergravity treatment at 300g for 24 h also increased the pH value of apoplastic solution in epicotyls. Taken together, these results suggest that the translocation of organic solutes from the seed to epicotyls is inhibited by prolonged hypergravity treatment, which may underlie the suppression of epicotyl growth, and that the breakdown of H+ gradient across the plasma membrane in epicotyl cells may be at least partly involved in the reduction of organic solute accumulation under hypergravity conditions.  相似文献   
7.
Space Science Reviews - In this chapter, we review the contribution of space missions to the determination of the elemental and isotopic composition of Earth, Moon and the terrestrial planets, with...  相似文献   
8.
Under hypergravity conditions, the cell wall of stem organs becomes mechanically rigid and elongation growth is suppressed, which can be recognized as the mechanism for plants to resist gravitational force. The changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by the differential display method, for identifying genes involved in hypergravity-induced growth suppression. Sixty-two cDNA clones were expressed differentially between the control and 300 g conditions: the expression levels of 39 clones increased, whereas those of 23 clones decreased under hypergravity conditions. Sequence analysis and database searching revealed that 12 clones, 9 up-regulated and 3 down-regulated, have homology to known proteins. The expression of these genes was further analyzed using RT-PCR. Finally, six genes were confirmed to be up-regulated by hypergravity. One of such genes encoded 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of terpenoids such as membrane sterols and several types of hormones. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of genes encoding CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water, and those of the alpha-tubulin gene. These genes may be involved in a series of cellular events leading to growth suppression of stem organs under hypergravity conditions.  相似文献   
9.
This paper proposes a new aerodynamic device, which was designated multi-row-disk (MRD). This device has a cone and stabilizer disks being arranged in the axial direction. This device can arbitrarily change its aerodynamic characteristics by translating stabilizer disks. In the first part of this paper, the effect of several nose shape configurations including the MRD device on the aerodynamic characteristics is reported. By increasing the number of stabilizer disks, zero-lift drag and induced drag can be reduced. It was also found that putting cavities on the conical surface is effective for improving longitudinal static stability. In the second part, the effect of cavity flow instability on pressure and strain oscillation is reported. We drew the design criterion that the configuration of stabilizer disks should be determined not to couple the 1st mode with pressure oscillation frequency, which can be predicted with Rossiter's formula.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号