全文获取类型
收费全文 | 276篇 |
免费 | 0篇 |
国内免费 | 3篇 |
专业分类
航空 | 164篇 |
航天技术 | 60篇 |
综合类 | 2篇 |
航天 | 53篇 |
出版年
2022年 | 1篇 |
2021年 | 6篇 |
2020年 | 1篇 |
2019年 | 3篇 |
2018年 | 34篇 |
2017年 | 19篇 |
2016年 | 1篇 |
2015年 | 7篇 |
2014年 | 4篇 |
2013年 | 16篇 |
2012年 | 9篇 |
2011年 | 13篇 |
2010年 | 11篇 |
2009年 | 13篇 |
2008年 | 12篇 |
2007年 | 15篇 |
2006年 | 5篇 |
2005年 | 11篇 |
2004年 | 8篇 |
2003年 | 4篇 |
2002年 | 2篇 |
2001年 | 10篇 |
2000年 | 4篇 |
1999年 | 4篇 |
1998年 | 4篇 |
1997年 | 6篇 |
1996年 | 1篇 |
1995年 | 6篇 |
1994年 | 5篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1986年 | 2篇 |
1985年 | 9篇 |
1984年 | 7篇 |
1983年 | 3篇 |
1982年 | 4篇 |
1981年 | 9篇 |
1978年 | 1篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1967年 | 1篇 |
1963年 | 1篇 |
排序方式: 共有279条查询结果,搜索用时 15 毫秒
1.
A Fekete Gy Rontó M Hegedüs K Módos A Bérces G Kovács H Lammer C Panitz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(8):1306-1310
The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation (lambda=254 nm) and high vacuum (10(-4) Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA. 相似文献
2.
Nicholas Achilleos Nicolas André Xochitl Blanco-Cano Pontus C. Brandt Peter A. Delamere Robert Winglee 《Space Science Reviews》2015,187(1-4):229-299
The rapid rotation of the gas giant planets, Jupiter and Saturn, leads to the formation of magnetodisc regions in their magnetospheric environments. In these regions, relatively cold plasma is confined towards the equatorial regions, and the magnetic field generated by the azimuthal (ring) current adds to the planetary dipole, forming radially distended field lines near the equatorial plane. The ensuing force balance in the equatorial magnetodisc is strongly influenced by centrifugal stress and by the thermal pressure of hot ion populations, whose thermal energy is large compared to the magnitude of their centrifugal potential energy. The sources of plasma for the Jovian and Kronian magnetospheres are the respective satellites Io (a volcanic moon) and Enceladus (an icy moon). The plasma produced by these sources is globally transported outwards through the respective magnetosphere, and ultimately lost from the system. One of the most studied mechanisms for this transport is flux tube interchange, a plasma instability which displaces mass but does not displace magnetic flux—an important observational constraint for any transport process. Pressure anisotropy is likely to play a role in the loss of plasma from these magnetospheres. This is especially the case for the Jovian system, which can harbour strong parallel pressures at the equatorial segments of rotating, expanding flux tubes, leading to these regions becoming unstable, blowing open and releasing their plasma. Plasma mass loss is also associated with magnetic reconnection events in the magnetotail regions. In this overview, we summarise some important observational and theoretical concepts associated with the production and transport of plasma in giant planet magnetodiscs. We begin by considering aspects of force balance in these systems, and their coupling with the ionospheres of their parent planets. We then describe the role of the interaction between neutral and ionized species, and how it determines the rate at which plasma mass and momentum are added to the magnetodisc. Following this, we describe the observational properties of plasma injections, and the consequent implications for the nature of global plasma transport and magnetodisc stability. The theory of the flux tube interchange instability is reviewed, and the influences of gravity and magnetic curvature on the instability are described. The interaction between simulated interchange plasma structures and Saturn’s moon Titan is discussed, and its relationship to observed periodic phenomena at Saturn is described. Finally, the observation, generation and evolution of plasma waves associated with mass loading in the magnetodisc regions is reviewed. 相似文献
3.
M. Gogoshev N. Petkov A. Kuzmin Ts. Gogosheva St. Spassov Iv. Kostadinov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(7):115-120
This paper shows the possibilities of the optical scanning imager for investigation of the structure of the auroral, SAR and tropical arcs and in this way to study the particle precipitation, neutral winds across the magnetic equator, drifts, electric fields and the current systems in the ionosphere. 相似文献
4.
Gy Rontó A Bérces A Fekete G Kovács P Gróf H Lammer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(8):1302-1305
Polycrystalline uracil thin layers participate in the phage and uracil response (PUR) experiment, assigned to the biological dosimetry of the extraterrestrial solar radiation on the International Space Station (ISS). In ground based experiments (experiment verification tests), the following space parameters were simulated and studied: temperature, vacuum and short wavelength UV (UV-C, down to 200 nm) radiation. The closed uracil samples proved to be vacuum-tight for 7 days. In the tested temperature range (from -20 to +40 degrees C) the uracil samples are stable. The kinetic of dimer formation (dimerization) and reversion (monomerization) of uracil dimers due to short wavelength UV radiation was detected, the monomerization efficiency of the polychromatic deuterium lamp is higher than that of the germicidal lamp. A mathematical model describing the kinetic of monomerization-dimerization was constructed. Under the influence of UV radiation the dimerization-monomerization reactions occur simultaneously, thus the additivity law of the effect of the various wavelengths is not applicable. 相似文献
5.
F Gòdia J Albiol J Pérez N Creus F Cabello A Montràs A Masot Ch Lasseur 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(7):1483-1493
The different advances in the Micro Ecological Life Support System Alternative project (MELISSA), fostered and coordinated by the European Space Agency, as well as in other associated technologies, are integrated and demonstrated in the MELISSA Pilot Plant laboratory. During the first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re-designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of biological systems such as MELISSA as life support systems. The facility will also serve as a test bed to study the robustness and stability of the continuous operation of a complex biological system. This includes testing of the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the system, as well as tracking the genetic stability of the microbial strains used. The new period is envisaged as a contribution to the further development of more complete biological life support systems for long-term manned missions, that should be better defined from the knowledge to be gained from this integration phase. This contribution summarizes the current status of the Pilot Plant and the planned steps for the new period. 相似文献
6.
K. Kecskeméty S. Pintér 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(3):101-104
Flux variations of 1 – 5 MeV protons are studied in energetic storm particle events with respect to the preshock solar wind plasma parameters and to the thickness of the collisionless interplanetary shock wave. It is found that the peak intensity in ESP events depends on pre-shock plasma density and on the thickness of the transition region. These relations predict, in agreement with recent observations, the increase of ESP events at larger heliocentric distances. 相似文献
7.
Y. Malméjac 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(5):61-64
This report deals with the present plans and philosophy of the European Space Agency as regards the interest and the justification for a European Experimental Research Program in Space. It offers recommendations to be considered by both the space investigators and the E.S.A. executive in order to achieve the most urgent needs. 相似文献
8.
Olivier Mousis Eric Chassefière Jérémie Lasue Vincent Chevrier Megan E. Elwood Madden Azzedine Lakhlifi Jonathan I. Lunine Franck Montmessin Sylvain Picaud Frédéric Schmidt Timothy D. Swindle 《Space Science Reviews》2013,174(1-4):213-250
Thermodynamic conditions suggest that clathrates might exist on Mars. Despite observations which show that the dominant condensed phases on the surface of Mars are solid carbon dioxide and water ice, clathrates have been repeatedly proposed to play an important role in the distribution and total inventory of the planet’s volatiles. Here we review the potential consequences of the presence of clathrates on Mars. We investigate how clathrates could be a potential source for the claimed existence of atmospheric methane. In this context, plausible clathrate formation processes, either in the close subsurface or at the base of the cryosphere, are reviewed. Mechanisms that would allow for methane release into the atmosphere from an existing clathrate layer are addressed as well. We also discuss the proposed relationship between clathrate formation/dissociation cycles and how potential seasonal variations influence the atmospheric abundances of argon, krypton and xenon. Moreover, we examine several Martian geomorphologic features that could have been generated by the dissociation of extended subsurface clathrate layers. Finally we investigate the future in situ measurements, as well as the theoretical and experimental improvements that will be needed to better understand the influence of clathrates on the evolution of Mars and its atmosphere. 相似文献
9.
Markus J. Aschwanden Felix Scholkmann William Béthune Werner Schmutz Valentina Abramenko Mark C. M. Cheung Daniel Müller Arnold Benz Guennadi Chernov Alexei G. Kritsuk Jeffrey D. Scargle Andrew Melatos Robert V. Wagoner Virginia Trimble William H. Green 《Space Science Reviews》2018,214(2):55
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type. 相似文献
10.
M R Patel A Bérces T Kerékgyárto Gy Rontó H Lammer J C Zarnecki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(8):1247-1252
The ultraviolet (UV) environment of Mars has been investigated to gain an understanding of the variation of exposure throughout a Martian year, and link this flux to biological effects and possible survival of organisms at the Martian surface. To gain an idea of how the solar UV radiation varies between different regions, including planned landing sites of two future Mars surface missions, we modelled the total solar UV surface flux throughout one Martian year for two different dust scenarios. To understand the degree of solar UV stress on micro-organisms and/or molecules essential for life on the surface of Mars, we also calculated the biologically effective dose (BED) for T7 and Uracil in relevant wavelength regions at the Martian surface as a function of season and latitude, and discuss the biological survival rates in the presence of Martian solar UV radiation. High T7/Uracil BED ratios indicate that even at high latitudes where the UV flux is significantly reduced, the radiation environment is still hostile for life due to the persisting UV-C component of the flux. 相似文献