首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
航空   7篇
航天技术   5篇
航天   6篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2009年   1篇
  2007年   5篇
  1996年   1篇
  1994年   1篇
排序方式: 共有18条查询结果,搜索用时 46 毫秒
1.
A new summer temperature proxy was built for northern Fennoscandia in AD 1000–2004 using parameters of tree growth from a large region, extending from the Swedish Scandes to the Kola Peninsula. It was found that century-scale (55–140 year) cyclicity is present in this series during the entire time interval. This periodicity is highly significant and has a bi-modal structure, i.e. it consists of two oscillation modes, 55–100 year and 100–140 year variations. A comparison of the century-long variation in the northern Fennoscandian temperature proxy with the corresponding variations in Wolf numbers and concentration of cosmogenic 10Be in glacial ice shows that a probable cause of this periodicity is the modulation of regional climate by the secular solar cycle of Gleissberg. This is in line with the results obtained previously for a more limited part of the region (Finnish Lapland: 68–70° N, 20–30° E). Thus the reality of a link between long-term changes in solar activity and climate in Fennoscandia has been confirmed. Possible mechanisms of solar influence on the lower troposphere are discussed.  相似文献   
2.
Coronal loops, which trace closed magnetic field lines, are the primary structural elements of the solar atmosphere. Complex dynamics of solar coronal magnetic loops, together with action of possible subphotospheric dynamo mechanisms, turn the majority of the coronal loops into current-carrying structures. In that connection none of the loops can be considered as isolated from the surroundings. The current-carrying loops moving relative to each other interact via the magnetic field and currents. One of the ways to take into account this interaction consists in application of the equivalent electric circuit models of coronal loops. According to these models, each loop is considered as an equivalent electric LCR-circuit with variable inductive coefficients L, capacitance C, and resistance R, which depend on shape, scale, position of the loop with respect to neighbouring loops, as well as on the plasma parameters in the magnetic tube. Such an approach enables to describe the process of electric current dynamics in the groups of coronal loops, as well as the related dynamical, energy release and radiation processes. In the present paper we describe the major principles of LCR-circuit models of coronal magnetic loops, and show their application for interpretation of the observed oscillatory phenomena in the loops and in the related radiation.  相似文献   
3.
In this work we studied the spatial and temporal structure of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation as well as possible reasons for the peculiarities of this structure. The study revealed a strong latitudinal and regional dependence of SA/GCR effects on pressure variations in the lower troposphere which seems to be determined by specific features of baric systems formed in different regions. The temporal structure of SA/GCR effects on the troposphere circulation at high and middle latitudes is characterized by a roughly 60-year periodicity which is apparently due to the epochs of the large-scale atmospheric circulation. It is suggested that a possible mechanism of long-term effects of solar activity and cosmic ray variations on the troposphere circulation involves changes in the evolution of the polar vortex in the stratosphere of high latitudes, as well as planetary frontal zones.  相似文献   
4.
Several types of numerical models are used to analyze the interactions of the solar wind flow with Mercury’s magnetosphere, including kinetic models that determine magnetic and electric fields based on the spatial distribution of charges and currents, magnetohydrodynamic models that describe plasma as a conductive liquid, and hybrid models that describe ions kinetically in collisionless mode and represent electrons as a massless neutralizing liquid. The structure of resulting solutions is determined not only by the chosen set of equations that govern the behavior of plasma, but also by the initial and boundary conditions; i.e., their effects are not limited to the amount of computational work required to achieve a quasi-stationary solution. In this work, we have proposed using the magnetic field computed by the paraboloid model of Mercury’s magnetosphere as the initial condition for subsequent hybrid modeling. The results of the model have been compared to measurements performed by the Messenger spacecraft during a single crossing of the magnetosheath and the magnetosphere. The selected orbit lies in the terminator plane, which allows us to observe two crossings of the bow shock and the magnetopause. In our calculations, we have defined the initial parameters of the global magnetospheric current systems in a way that allows us to minimize paraboloid magnetic field deviation along the trajectory of the Messenger from the experimental data. We have shown that the optimal initial field parameters include setting the penetration of a partial interplanetary magnetic field into the magnetosphere with a penetration coefficient of 0.2.  相似文献   
5.
Atmospheric erosion of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wave-lengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 microm band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O ion pick up at orbital distances 相似文献   
6.
Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission   总被引:6,自引:0,他引:6  
NASA’s Lunar Precursor Robotic Program (LPRP), formulated in response to the President’s Vision for Space Exploration, will execute a series of robotic missions that will pave the way for eventual permanent human presence on the Moon. The Lunar Reconnaissance Orbiter (LRO) is first in this series of LPRP missions, and plans to launch in October of 2008 for at least one year of operation. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions, Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources, Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration, Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits, Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight. Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using light weight synthetic aperture radar. This paper will give an introduction to each of these instruments and an overview of their objectives.  相似文献   
7.
The St. Patrick’s Day storm being the strongest geomagnetic storm of Solar Cycle 24 caused strong changes in ionospheric and thermospheric dynamics. The paper presents a study of vertical plasma transport in the ionosphere during the St. Patrick’s Day storm with using both observations and modeling. The observations give the ionospheric peak height obtained with the chirp vertical sounding ionosonde and the neutral wind velocities obtained with the Fabry-Perot interferometer. The ionospheric peak height is an indicator of the total vertical plasma transport, while meridional wind and electromagnetic drift are the two main drivers of the vertical plasma transport. The Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere used in this study gives the total set of ionospheric and thermospheric parameters including F2-layer peak height, neutral wind velocities, electric field, and neutral composition. The model/data comparison allows us to obtain two main results. The first one is an estimation of the model prediction possibilities under storm conditions. The second result is an indirect assessment of the neutral wind and electric field contribution into the changes in the ionospheric peak height in the case of the St. Patrick’s Day geomagnetic storm.  相似文献   
8.
Possible reasons for the temporal instability of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation were studied. It was shown that the detected earlier ∼60-year oscillations of the amplitude and sign of SA/GCR effects on the troposphere pressure at high and middle latitudes (Veretenenko and Ogurtsov, Adv.Space Res., 2012) are closely related to the state of a cyclonic vortex forming in the polar stratosphere. The intensity of the vortex was found to reveal a roughly 60-year periodicity affecting the evolution of the large-scale atmospheric circulation and the character of SA/GCR effects. An intensification of both Arctic anticyclones and mid-latitudinal cyclones associated with an increase of GCR fluxes at minima of the 11-year solar cycles is observed in the epochs of a strong polar vortex. In the epochs of a weak polar vortex SA/GCR effects on the development of baric systems at middle and high latitudes were found to change the sign. The results obtained provide evidence that the mechanism of solar activity and cosmic ray influences on the lower atmosphere circulation involves changes in the evolution of the stratospheric polar vortex.  相似文献   
9.
Astrophysical plasmas can have parameters vastly different from the more studied laboratory and space plasmas. In particular, the magnetic fields can be the dominant component of the plasma, with energy-density exceeding the particle rest-mass energy density. Magnetic fields then determine the plasma dynamical evolution, energy dissipation and acceleration of non-thermal particles. Recent data coming from astrophysical high energy missions, like magnetar bursts and Crab nebula flares, point to the importance of magnetic reconnection in these objects. In this review we outline a broad spectrum of problems related to the astrophysical relevant processes in magnetically dominated relativistic plasmas. We discuss the problems of large scale dynamics of relativistic plasmas, relativistic reconnection and particle acceleration at reconnecting layers, turbulent cascade in force-fee plasmas. A number of astrophysical applications are also discussed.  相似文献   
10.
Analysis of the general statistical features of the sunspot cycles in the period 1700–1996 AD, including the Gnevyshev–Ohl rule, Waldmeier rule and an amplitude–period effect, was performed for both Wolf numbers and group sunspot numbers. It was shown that for both solar indices all the statistical effects are weaker over the time interval 1700–1855 AD than over the time interval 1856–1996 AD. Possible causes of this difference are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号