首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
航空   5篇
航天技术   16篇
航天   4篇
  2021年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1982年   1篇
  1978年   2篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
By the term "m-distributed optical signal" we mean a noise-like optical signal whose envelope (or intensity) fluctuation probability is modeled by Nakagami's "m-distribution." Using the m-distribution which has been widely used as an analytical model of the fading envelope in radio communications, it is shown that one can generally analyze the statistical properties such as the photoelectron count probabilities and error probabilities for the wider class of noise-like optical signals; some numerical results are also given.  相似文献   
2.
An approach for fusing offboard track-level data at a central fusion node is presented. The case where the offboard tracker continues to update its local track estimate with measurement and system dynamics models that are not necessarily linear is considered. An algorithm is developed to perform this fusion at a central node without having access to the offboard measurements, their noise statistics, or the location of the local estimator. The algorithm is based on an extension of results that were originally established for linear offboard trackers. A second goal of this work is to develop an inequality constraint for selecting the proper sampling interval for the incoming state estimates to the fusion node. This interval is selected to allow use of conventional Kalman filter algorithms at the fusion node without suffering error performance degradation due to processing a correlated sequence of track state estimates  相似文献   
3.
Direct initiation of detonations in gaseous mixtures of C2H2-O2, H2-O2 and H2-Cl2 in the pressure range of 10–150 torr using flash photolysis was studied. Similar to blast initiation using a concentrated powerful energy source, it was found that for photochemical initiation, there exists a certain threshold of flash intensity and energy for each mixture at any given initial pressure and composition below which a deflagration is formed. At the critical threshold, however, a fully developed detonation is rapidly formed in the immediate vicinity of the window of incident UV radiation. However, at super critical flash energies, the amplitude of the detonation formed decreases and combustion of the entire irradiated volume approaches a constant volume explosion. It was found that photo-chemical initiation requires both a certain minimum peak value of the free radical concentration generated by the photo-dissociation as well as an appropriate gradient of this free radical distribution. The minimum peak radical concentration permits rapid reaction rates for the generation of strong pressure waves, while the gradient is necessary for the amplification of the shock waves to a detonation. If the gradient is absent and the free radicals are uniformly distributed in the mixture, then the entire volume simply explodes as in a constant volume process. The present study reveals that the mechanism of photochemical initiation is one of proper temporal synchronization of the chemical energy release to the shock wave as it propagates through the mixture. In analogy to the LASER, the term SWACER is introduced to represent this mechanism of Shock Wave Amplication by Coherent Energy Release. There are strong indications that this SWACER mechanism is universal and plays the main role in the formation of detonations whenever a powerful concentrated external source is not used to generate a strong shock wave in the explosive.  相似文献   
4.
5.
We observed sodium emission from Mercury’s atmosphere using a Fabry–Perot Interferometer at Haleakala Observatory on June 14, 2006. The Fabry–Perot Interferometer was used as a wavelength-tunable filter. The spectra of the surface reflection were subtracted from the observed spectra because sodium emission is contaminated by the surface reflection of Mercury. The image obtained in our observation shows the sodium exosphere extended to the anti-solar direction. The lifetime of a sodium atom was estimated to be 1.6 × 104 to 1.9 × 105 s with an error by a factor of 3–4.  相似文献   
6.
MAGDAS PEN was established on 19th September 2019 as one of the MAGDAS observatory arrays located at Universiti Sains Malaysia (USM) (5.15°, 100.50°). The main objective of the MAGDAS project is to monitor global electromagnetic and the ambient plasma density in the geospace environment. This installation has contributed to a better understanding of the Sun-Earth coupling system. This paper presents the installation process of one of the MAGDAS magnetometers named YU-8 T magnetic sensor and provides a preliminary analysis of geomagnetic HDZ components amplitude-time that was observed at PEN station. A one-month HDZ-geomagnetic field data was processed from 1st November to 30th November 2019. The daily variations with a consistent pattern in delta H geomagnetic field components are observed throughout the day with eastward electric field effects that are observed during solar peak hours. The delta H-component gradually increases around 0700LT and reaches the maximum reading at 1300LT with a range of value ~ 40-70nT. The value slowly decreases that started from 1400LT until the night time. The reading during the night time shows a constant variation with magnitude varies in between ?10nT to + 10nT. The average H-component value of the night time is used as the baseline for the observation system. Overall, the observed trends portray a good sign of solar quiet field and Sq with no solar-terrestrial disturbances.  相似文献   
7.
Radiative and dynamical impacts of Arctic and Antarctic ozone holes on the general circulation are investigated with the aid of a general circulation model developed at Kyushu University. The model includes a simplified ozone photochemistry interactively coupled with radiation and dynamics. Resultant temperature structure consisting of a cooling in the polar lower stratosphere and a warming in the polar upper stratosphere brings about the intensification of the polar night jet. The cooling is caused by the decrease of solar ultraviolet heating due to the ozone depletion, while the warming is caused by adiabatic heating due to the enhancement of downward motion.  相似文献   
8.
High accuracy satellite drag model (HASDM)   总被引:2,自引:0,他引:2  
The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab’s High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.  相似文献   
9.
The Mercury’s Sodium Atmosphere Spectral Imager (MSASI) on BepiColombo (BC) will address a range of fundamental scientific questions pertaining to Mercury’s exosphere. The measurements will provide new information on regolith–exosphere–magnetosphere coupling as well as new understanding of the dynamics governing the exosphere bounded by the planetary surface, the solar wind and interplanetary space. MSASI is a high-dispersion visible spectrometer working in the spectral range around sodium D2 emission (589 nm). A tandem Fabry–Perot etalon is used to achieve a compact design. We presents a design of the spectral analyzer using Fabry–Perot interferometer. We conclude that: (1) The MSASI optical design is practical and can be implemented without new or critical technology developments; (2) The thermally-tuned etalon design is based on concepts, designs and materials that have good space heritage.  相似文献   
10.
This paper describes the application of genetic programming to delay-time algorithms for anti-air missiles equipped with proximity fuzes. Current algorithms for determining the delay-time before the detonation of a missile warhead rely on human effort and experience and are, in general, deficient. We show that by applying genetic programming, an evolutionary optimization technique, determination of the timing can be automated and made near-optimal. A simulation study is discussed  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号