首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   2篇
航天技术   2篇
综合类   1篇
航天   1篇
  2018年   1篇
  2014年   1篇
  2011年   2篇
  2009年   1篇
  1967年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Recent progress in the detection of small space objects, at geosynchronous altitudes, through ground-based optical and radar measurements is demonstrated as a viable method. However, in general, these methods are limited to detection of objects greater than 10?cm. This paper examines the use of magnetometers to detect plausible flyby encounters with charged space objects using a matched filter signal existence binary hypothesis test approach. Relevant data-set processing and reduction of archival fluxgate magnetometer data from the NASA THEMIS mission is discussed in detail. Using the proposed methodology and a false alarm rate of 10%, 285 plausible detections with probability of detection greater than 80% are claimed and several are reviewed in detail.  相似文献   
3.
Catastrophic degradation of high power laser diodes is due to the generation of extended defects inside the active parts of the laser structure during the laser operation. The mechanism driving the degradation is strongly re- lated to the existence of localized thermal stresses generated during the laser operation. These thermal stresses can overcome the yield strength of the materials forming the active part of the laser diode. Different factors contribute to reduce the laser power threshold for degradation. Among them the thermal transport across the laser structure constitutes a critical issue for the reliability of the device.  相似文献   
4.
Signals from Global Positioning System (GPS) satellites at the horizon or at low elevations are often excluded from a GPS solution because they experience considerable ionospheric delays and multipath effects. Their exclusion can degrade the overall satellite geometry for the calculations, resulting in greater errors; an effect known as the Dilution of Precision (DOP). In contrast, signals from high elevation satellites experience less ionospheric delays and multipath effects. The aim is to find a balance in the choice of elevation mask, to reduce the propagation delays and multipath whilst maintaining good satellite geometry, and to use tomography to correct for the ionosphere and thus improve single-frequency GPS timing accuracy. GPS data, collected from a global network of dual-frequency GPS receivers, have been used to produce four GPS timing solutions, each with a different ionospheric compensation technique. One solution uses a 4D tomographic algorithm, Multi-Instrument Data Analysis System (MIDAS), to compensate for the ionospheric delay. Maps of ionospheric electron density are produced and used to correct the single-frequency pseudorange observations. This method is compared to a dual-frequency solution and two other single-frequency solutions: one does not include any ionospheric compensation and the other uses the broadcast Klobuchar model. Data from the solar maximum year 2002 and October 2003 have been investigated to display results when the ionospheric delays are large and variable. The study focuses on Europe and results are produced for the chosen test site, VILL (Villafranca, Spain). The effects of excluding all of the GPS satellites below various elevation masks, ranging from 5° to 40°, on timing solutions for fixed (static) and mobile (moving) situations are presented. The greatest timing accuracies when using the fixed GPS receiver technique are obtained by using a 40° mask, rather than a 5° mask. The mobile GPS timing solutions are most accurate when satellites at lower elevations continue to be included: using a mask between 10° and 20°. MIDAS offers the most accurate and least variable single-frequency timing solution and accuracies to within 10 ns are achieved for fixed GPS receiver situations. Future improvements are anticipated by combining both GPS and Galileo data towards computing a timing solution.  相似文献   
5.
This paper presents a bio-inspired approach for the future design of strain sensors to be embedded in space structures. Campaniform sensilla are natural strain sensors and are used by insects for monitoring deformations of their body. The strategy used in nature is to locally amplify, through arrays of elliptical micro-holes, mechanical deformations. The authors focused their research on campaniform sensilla because of their simplicity and straightforward potential implementation in engineering systems. In this paper, the biological concept and structural analysis, performed to understand underlying principles, are presented and discussed.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号