首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
航空   6篇
航天技术   6篇
航天   4篇
  2013年   2篇
  2011年   4篇
  2003年   1篇
  1996年   2篇
  1993年   3篇
  1989年   2篇
  1983年   1篇
  1980年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
COMPTEL is the first imaging telescope to explore the MeV gamma-ray range (0.7 to 30 MeV). At present, it is performing a complete sky survey. In later phases of the mission selected celestial objects will be studied in more detail. The data from the first year of the mission have demonstrated that COMPTEL performs very well. First sky maps of the inner part of the Galaxy clearly identify the plane as a bright MeV-source (probably due to discrete sources as well as diffuse radiation). The Crab and Vela pulsar lightcurves have been measured with unprecedented accuracy. The quasars 3C273 and 3C279 have been seen for the first time at MeV energies. Both quasars show a break in their energy spectra in the COMPTEL energy range. The 1.8 MeV line from radioactive 26A1 has been detected from the central region of the Galaxy and a first sky map of the inner part of the Galaxy has been obtained in the light of this line. Upper limits to gamma-ray line emission at 847 keV and 1.238 MeV from SN 1991T have been derived. Upper limits to the interstellar gamma-ray emissivity have been determined at MeV-energies. Several cosmic gamma-ray bursts within the field-of-view have been located with an accuracy of about 1°. On 1991 June 9, 11 and 15, COMPTEL observed gamma-ray emission (continuum and line) from three solar flares. Also neutrons were detected from the June 9 and June 15 flares.  相似文献   
2.
ESA??s hard X-ray and soft gamma-ray observatory INTEGRAL is covering the 3 keV to 10 MeV energy band, with excellent sensitivity during long and uninterrupted observations of a large field of view (??100 square degrees), with ms time resolution and keV energy resolution. It links the energy band of pointed soft X-ray missions such as XMM-Newton with that of high-energy gamma-ray space missions such as Fermi and ground based TeV observatories. Key results obtained so far include the first sky map in the light of the 511 keV annihilation emission, the discovery of a new class of high mass X-ray binaries and detection of polarization in cosmic high energy radiation. For the foreseeable future, INTEGRAL will remain the only observatory allowing the study of nucleosynthesis in our Galaxy, including the long overdue next nearby supernova, through high-resolution gamma-ray line spectroscopy. Science results to date and expected for the coming mission years span a wide range of high-energy astrophysics, including studies of the distribution of positrons in the Galaxy; reflection of gamma-rays off clouds in the interstellar medium near the Galactic Centre; studies of black holes and neutron stars particularly in high- mass systems; gamma-ray polarization measurements for X-ray binaries and gamma-ray bursts, and sensitive detection capabilities for obscured active galaxies with more than 1000 expected to be found until 2014. This paper summarizes scientific highlights obtained since INTEGRAL??s launch in 2002, and outlines prospects for the INTEGRAL mission.  相似文献   
3.
Hispasat Advanced Generation 1 (HAG1) is the first satellite using the SGEO platform, which is under the development in the ESA Artes-11 program. Since the last presentation in the IAC 2007, a European industrial consortium led by OHB has completed the mission and spacecraft design. The platform Preliminary Design Review has been carried out in May 2008. The customer for the first mission is a commercial operator—Hispasat. The contract was signed in December 2008 and the satellite will be launched in 2012. To give confidence to the customer, SGEO platform will use up to date flight proven technologies. HAG1 carries 20/24 Ku-band and 3/5 Ka-band transponders to provide commercial services. Some innovative payload technologies will also be flown on board of HAG1 to gain in-orbit heritage. SGEO has also been selected as the baseline platform for the ESA Data Relay Satellite (EDRS). Phase-A study has just kicked off in January 2009. The targeted launch date is 2013. Heinrich Hertz will also use the SGEO platform. Heinrich Hertz is funded by the German Space Agency (DLR) and provides flight opportunities for technologies and components developed by the German Space Industry. With the HAG1 contract in hand, and EDRS and Heinrich Hertz in the line, OHB with its partners has the confidence that it will be able to speed up the product development of the SGEO platform for potential customers in the commercial market. This paper will first present the updated platform design and the status of the product development will be followed with the introduction of innovative payload technologies on board the first mission—HAG1 and ended with the mission concepts of EDRS and Heinrich Hertz missions.  相似文献   
4.
5.
In this paper the potential use of ‘smart’ materials to improve the performance and cost efficiency of small satellites is introduced. The basic operating performance of the structural smart materials are reviewed as are some of the foreseen application areas. The state of the art in applying smart materials for use in space is then discussed with a focus on areas where information is lacking. A series of actions to alleviate these shortcomings are proposed and some current activities of the DLR-Institute of Structural Mechanics to answer these calls for action are highlighted.  相似文献   
6.
Sodium–potassium droplets from the primary coolant loop of Russian orbital reactors have been released into space. These droplets are called NaK droplets. Sixteen nuclear powered satellites of the type RORSAT launched between 1980 and 1988 activated a reactor core ejection system, mostly between 900 and 950 km altitude. The core ejection causes an opening of the primary coolant loop. The liquid coolant consists of eutectic sodium–potassium alloy and has been released into space during these core ejections. The NaK coolant has been forming droplets up to a diameter of 5.5 cm. NaK droplets have been modeled before in ESA's MASTER Debris and Meteoroid Environment Model. The approach is currently revised for the MASTER-2009 upgrade. A mathematical improvement is introduced by substituting the current size distribution function by the modified Rosin–Rammler equation. A bimodal size distribution is derived which is based on the modified mass based Rosin–Rammler equation. The equation is modified by truncating the size range and normalizing over the finite range between the size limits of the smallest and the biggest droplet. The parameters of the model are introduced and discussed. For the validation of the NaK release model, sixteen release events are simulated. The resulting size distribution is compared with radar measurement data. The size distribution model fits well with revised published measurement data of radar observations. Results of orbit propagation simulation runs are presented in terms of spatial density.  相似文献   
7.
In the framework of a potential European Space Situational Awareness System (ESSAS), we propose some optical strategies such that try to minimize the requirement of tracking measurements for the orbit determination computation when the catalogue is under construction. We will analyse them in terms of coverage, timeliness and orbit determination accuracy by means of the AS4 simulator (developed by Deimos Space S.L.U.). Moreover, observation campaigns have been performed from La Sagra Observatory in order to check the applicability of those strategies. These strategies are used for defining different choices for the future European Optical Space Surveillance System in the framework of the ESA contract no. 22738/09/D/HK.  相似文献   
8.
An ion chemistry model is used to investigate the negative chlorine ion chemistry of the mesosphere for quiet ionospheric conditions. Model results are presented for high latitudes in February as well as for the equator in Summer. For nighttime, Cl-Cl-, Cl-Cl-(HCl), and NO3(HCl) are the most abundant chlorine anions in the mesosphere. The concentration of ClO3 depends significantly on its stability against collision-induced dissociation. In contrast to previous model predictions, the abundance of Cl-(H2O)Cl-(H2O) is small. For daytime, photoelectron detachment and photodissociation have pronounced impact on the negative chlorine ion chemistry in the mesosphere. The abundance of all anion cluster is considerably smaller than at night. While Cl-Cl- decreases in the upper mesosphere, its abundance increases at lower altitudes.  相似文献   
9.
Based on the experience gained from Sunrayce '95, the Solar Motion Team has made many changes to the design of the next generation solar car. These changes have resulted in a vehicle that is very different from the “Solar Rolar”, The Dakota Sun is a three wheeled vehicle with separate cab and solar array. This design allows for improved aerodynamics, decreased weight, lower rolling resistance, and ease of manufacture compared to the four wheeled catamaran used in the last race. However, this design sacrifices total enclosed wheel base area, additional room for components, and added power from side solar panels, The major objectives for the team's redesigned Sunrayce '97 entry are: systems integration; decrease the weight of the car; decrease aerodynamic drag; more efficient use of available energy; and increased driver safety. The team has set a standard to use the latest available technology. Although this increases the complexity of the components, by using a systems engineering approach the “Dakota Sun” has evolved into a more integrated vehicle. This philosophy of integrated design has resulted in great improvements in mechanical design and manufacturing techniques, as well as electrical innovations. The major design changes evident from the original Sunraycen '95 vehicle are the result of an evolutionary design process that has produced the highly competitive Sunraycel '97 design outlined in this article  相似文献   
10.
Until recently, only about 10 % of the total intracluster gas volume had been studied with high accuracy, leaving a vast region essentially unexplored. This is now changing and a wide area of hot gas physics and chemistry awaits discovery in galaxy cluster outskirts. Also, robust large-scale total mass profiles and maps are within reach. First observational and theoretical results in this emerging field have been achieved in recent years with sometimes surprising findings. Here, we summarize and illustrate the relevant underlying physical and chemical processes and review the recent progress in X-ray, Sunyaev–Zel’dovich, and weak gravitational lensing observations of cluster outskirts, including also brief discussions of technical challenges and possible future improvements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号