首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  国内免费   2篇
航空   11篇
航天技术   16篇
  2018年   1篇
  2017年   1篇
  2014年   4篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2006年   2篇
  2004年   1篇
  2002年   1篇
  1997年   1篇
  1995年   2篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
As part of the Cluster Wave Experiment Consortium (WEC), the Wide-Band (WBD) Plasma Wave investigation is designed to provide high-resolution measurements of both electric and magnetic fields in selected frequency bands from 25 Hz to 577 kHz. Continuous waveforms are digitised and transmitted in either a 220 kbit s-1 real-time mode or a 73 kbit s-1 recorded mode. The real-time data are received directly by a NASA Deep-Space Network (DSN) receiving station, and the recorded data are stored in the spacecraft solid-state recorder for later playback. In both cases the waveforms are Fourier transformed on the ground to provide high-resolution frequency-time spectrograms. The WBD measurements complement those of the other WEC instruments and also provide a unique new capability for performing very-long-baseline interferometry (VLBI) measurements.  相似文献   
2.
The Juno Waves Investigation   总被引:1,自引:0,他引:1  
Jupiter is the source of the strongest planetary radio emissions in the solar system. Variations in these emissions are symptomatic of the dynamics of Jupiter’s magnetosphere and some have been directly associated with Jupiter’s auroras. The strongest radio emissions are associated with Io’s interaction with Jupiter’s magnetic field. In addition, plasma waves are thought to play important roles in the acceleration of energetic particles in the magnetosphere, some of which impact Jupiter’s upper atmosphere generating the auroras. Since the exploration of Jupiter’s polar magnetosphere is a major objective of the Juno mission, it is appropriate that a radio and plasma wave investigation is included in Juno’s payload. This paper describes the Waves instrument and the science it is to pursue as part of the Juno mission.  相似文献   
3.
In order to test laser ranging possibilities to space debris objects, the Satellite Laser Ranging (SLR) Station Graz installed a frequency doubled Nd:YAG pulse laser with a 1 kHz repetition rate, a pulse width of 10 ns, and a pulse energy of 25 mJ at 532 nm (on loan from German Aerospace Center Stuttgart – DLR). We developed and built low-noise single-photon detection units to enable laser ranging to targets with inaccurate orbit predictions, and adapted our standard SLR software to include a few hundred space debris targets. With this configuration, we successfully tracked – within 13 early-evening sessions of each about 1.5 h – 85 passes of 43 different space debris targets, in distances between 600 km and up to more than 2500 km, with radar cross sections from >15 m2 down to <0.3 m2, and measured their distances with an average precision of about 0.7 m RMS.  相似文献   
4.
The Cassini mission provides a great opportunity to enlarge our knowledge of atmospheric electricity at the gas giant Saturn. Following Voyager studies, the RPWS (Radio and Plasma Wave Science) instrument has measured again the so-called SEDs (Saturn Electrostatic Discharges) which are the radio signature of lightning flashes. Observations by Cassini/ISS (Imaging Science Subsystem) have shown cloud features in Saturn’s atmosphere whose occurrence, longitudinal drift rate, and brightness were strongly related to the SEDs. In this paper we will review the main physical parameters of the SEDs. Lightning does not only give us clues about the dynamics of the atmosphere, but also serves as a natural tool to investigate properties of Saturn’s ionosphere. We will also discuss other lightning related phenomena and compare Saturn lightning with terrestrial and Jovian lightning.  相似文献   
5.
Satellite Laser Ranging (SLR) measurements contain information about the spin parameters of the fully passive, geodetic satellites. In this paper we spectrally analyze the SLR data of 5 geodetic satellites placed on the Low Earth Orbits: GFZ-1, WESTPAC, Larets, Starlette, Stella, and successfully retrieve the frequency signal from Larets and Stella only. The obtained signals indicate an exponential increase of the spin period of Larets: T = 0.860499·exp(0.0197066·D) [s], and Stella: T = 13.5582·exp(0.00431232·D) [s], where D is in days since launch. The initial spin periods calculated from the first month of the SLR observations are: Larets: Tinitial = 0.8239 s, Stella: Tinitial = 13.2048 s. Analysis of the apparent effects indicates the counter-clockwise spin direction of the satellites. The twice more heavy Stella lost its rotational energy more than four times slower than Larets. Fitting the spin model to the observed spin trends allows determination of the spin axis orientation evolution for Larets and Stella before their rotational period becomes equal to the orbital period.  相似文献   
6.
The nanosatellite BLITS (Ball Lens In The Space) demonstrates a successful design of the new spherical lens type satellite for Satellite Laser Ranging (SLR). The spin parameters of the satellite were calculated from more than 1000 days of SLR data collected from 6 High Repetition Rate (HRR) systems: Beijing, Changchun, Graz, Herstmonceux, Potsdam, Shanghai.  相似文献   
7.
发展了一种跨音速多升力面的气动设计方法和设计程序,它基于已成功应用于亚、跨音速机翼设计和亚音速双翼面设计的"余量修正迭代"概念.当升力面上出现超音速区和激波时自动引用迎风格式对控制方程进行修正.开发了一系列接口程序,包括目标压力设计程序.由此气动设计程羊、TAU程序以及相应的接口程序建立了跨音速多升力面气动反设计软件系统.用两个鸭翼-机翼构型验证了设计方法和设计程序,结果表明在高跨音速下设计迭代有很好的收敛性.  相似文献   
8.
Axions     
Raffelt  Georg 《Space Science Reviews》2002,100(1-4):153-158
Axions are one of the few particle-physics candidates for dark matter which are well motivated independently of their possible cosmological role. A brief review is given of the theoretical motivation for axions, their possible role in cosmology, the existing astrophysical limits, and the status of experimental searches.  相似文献   
9.
Satellite Laser Ranging (SLR) is a powerful and efficient technique to measure spin parameters of satellites equipped with corner cube reflectors. We obtained spin period determination of the satellite AJISAI from SLR data only: 17246 pass-by-pass estimates from standard 1–15 Hz SLR data (14/Aug/1986–30/Dec/2008) and 1444 pass-by-pass estimates (9/Oct/2003–30/Dec/2008) from data of the first 2 kHz SLR system from Graz, Austria. A continuous history of the slowing down of AJISAI spin is derived from frequency analysis, and corrected for the apparent effects. The apparent corrections, elaborated here, allowed very accurate determination of AJISAI initial spin period: 1.4855 ± 0.0007 [s]. The paper identifies also non-gravitational effects as a source of the periodical changes in the rate of slowing down of the satellite.  相似文献   
10.
The Graz 2 kHz Satellite Laser Ranging (SLR) measurements allow determination of the spin axis orientation of the geodetic satellite Ajisai. The high repetition rate of the laser makes it possible to determine the epoch time when the laser is pointing directly between two corner cube reflector (CCR) rings of the satellite. Identification of many such events during a few (up to 3) consecutive passes allows to state the satellite orientation in the celestial coordinate system. Six years of 2 kHz SLR data (October 2003–October 2009) delivered 331 orientation values which clearly show precession of the axis along a cone centered at 14h56m2.8s in right ascension and 88.512° in declination (J2000.0 celestial reference frame) and with an half-aperture angle θ of 1.405°. The spin axis precesses with a period of 117 days, which is equal to the period of the right ascension of the ascending node of Ajisai’s orbit. We present a model of the axis precession which allows prediction of the satellite orientation – necessary for the envisaged laser time transfer via Ajisai mirrors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号