首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
航空   3篇
航天技术   14篇
航天   1篇
  2014年   3篇
  2013年   3篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  1999年   1篇
  1991年   1篇
  1983年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
During encounters with comet Halley, the experiment PICCA onboard GIOTTO measured the gas phase organic ion composition of the coma and the experiment PUMA onboard VEGA-1 measured the dust composition. Joining both results, we obtain a consistent picture of the parent organic matter from which dust and gas is produced. One recognizes a complex unsaturated polycondensate, which splits during coma-formation into the more refractory C=C,C-N-containing dust part, and the more volatile C=C,C-O-containing gas part. The responsible exothermal chemical reactions, which are triggered by the sunlight, may play a major role in the dynamics of coma formation.This paper is a shortened and upgraded version of Krueger, F.R., Korth, A., and Kissel, J.: 1989, in S. Chang (ed.) Proc. of the ROSETTA Conf., Milpitas CA, January 1989, submitted.  相似文献   
2.
A new technique is developed to compensate multiple-wavelength distortion in airborne antenna arrays. This approach exploits the phase information in microwave reflections from arbitrary terrain. To handle reflections incident over a broad angle, a range-Doppler preprocessor is used in each element channel to resolve wavefronts incident simultaneously from different directions. The phase information for each direction of arrival is compared between elements and processed by optimal estimators to determine the phase corrections needed to compensate the distortion. To develop the estimators, a statistical model of the complex baseband terrain reflections is developed. This is in turn used to generate conditional probability densities involving the range Doppler observations and the parameters to be estimated. These densities are subsequently used to develop minimum variance and maximum likelihood estimators. The new estimators use additional information that has not been exploited by previous techniques and therefore provide enhanced performance  相似文献   
3.
In order to test laser ranging possibilities to space debris objects, the Satellite Laser Ranging (SLR) Station Graz installed a frequency doubled Nd:YAG pulse laser with a 1 kHz repetition rate, a pulse width of 10 ns, and a pulse energy of 25 mJ at 532 nm (on loan from German Aerospace Center Stuttgart – DLR). We developed and built low-noise single-photon detection units to enable laser ranging to targets with inaccurate orbit predictions, and adapted our standard SLR software to include a few hundred space debris targets. With this configuration, we successfully tracked – within 13 early-evening sessions of each about 1.5 h – 85 passes of 43 different space debris targets, in distances between 600 km and up to more than 2500 km, with radar cross sections from >15 m2 down to <0.3 m2, and measured their distances with an average precision of about 0.7 m RMS.  相似文献   
4.
Satellite Laser Ranging (SLR) measurements contain information about the spin parameters of the fully passive, geodetic satellites. In this paper we spectrally analyze the SLR data of 5 geodetic satellites placed on the Low Earth Orbits: GFZ-1, WESTPAC, Larets, Starlette, Stella, and successfully retrieve the frequency signal from Larets and Stella only. The obtained signals indicate an exponential increase of the spin period of Larets: T = 0.860499·exp(0.0197066·D) [s], and Stella: T = 13.5582·exp(0.00431232·D) [s], where D is in days since launch. The initial spin periods calculated from the first month of the SLR observations are: Larets: Tinitial = 0.8239 s, Stella: Tinitial = 13.2048 s. Analysis of the apparent effects indicates the counter-clockwise spin direction of the satellites. The twice more heavy Stella lost its rotational energy more than four times slower than Larets. Fitting the spin model to the observed spin trends allows determination of the spin axis orientation evolution for Larets and Stella before their rotational period becomes equal to the orbital period.  相似文献   
5.
The nanosatellite BLITS (Ball Lens In The Space) demonstrates a successful design of the new spherical lens type satellite for Satellite Laser Ranging (SLR). The spin parameters of the satellite were calculated from more than 1000 days of SLR data collected from 6 High Repetition Rate (HRR) systems: Beijing, Changchun, Graz, Herstmonceux, Potsdam, Shanghai.  相似文献   
6.
This work shows the capability of observing Venus with a sensor originally designed for Earth remote sensing. SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY), onboard ENVISAT, successfully observed visible and near-infrared spectra from the Venusian atmosphere. The Venus spectra were simulated using a line-by-line radiative transfer model. The single scattering approximation was applied in order to consider the effects of an approximately 20 km-thick haze layer above the main cloud deck, which was considered as a reflecting cloud located in the upper atmosphere of the planet. CO2 absorption lines could be distinguished in both observed and simulated spectra and a good agreement between them was also found.  相似文献   
7.
Satellite Laser Ranging (SLR) is a powerful and efficient technique to measure spin parameters of satellites equipped with corner cube reflectors. We obtained spin period determination of the satellite AJISAI from SLR data only: 17246 pass-by-pass estimates from standard 1–15 Hz SLR data (14/Aug/1986–30/Dec/2008) and 1444 pass-by-pass estimates (9/Oct/2003–30/Dec/2008) from data of the first 2 kHz SLR system from Graz, Austria. A continuous history of the slowing down of AJISAI spin is derived from frequency analysis, and corrected for the apparent effects. The apparent corrections, elaborated here, allowed very accurate determination of AJISAI initial spin period: 1.4855 ± 0.0007 [s]. The paper identifies also non-gravitational effects as a source of the periodical changes in the rate of slowing down of the satellite.  相似文献   
8.
The Graz 2 kHz Satellite Laser Ranging (SLR) measurements allow determination of the spin axis orientation of the geodetic satellite Ajisai. The high repetition rate of the laser makes it possible to determine the epoch time when the laser is pointing directly between two corner cube reflector (CCR) rings of the satellite. Identification of many such events during a few (up to 3) consecutive passes allows to state the satellite orientation in the celestial coordinate system. Six years of 2 kHz SLR data (October 2003–October 2009) delivered 331 orientation values which clearly show precession of the axis along a cone centered at 14h56m2.8s in right ascension and 88.512° in declination (J2000.0 celestial reference frame) and with an half-aperture angle θ of 1.405°. The spin axis precesses with a period of 117 days, which is equal to the period of the right ascension of the ascending node of Ajisai’s orbit. We present a model of the axis precession which allows prediction of the satellite orientation – necessary for the envisaged laser time transfer via Ajisai mirrors.  相似文献   
9.
The nanosatellite BLITS (Ball Lens In The Space) is the first object designed as a passive, spherical retroreflector of the Luneburg type, dedicated for Satellite Laser Ranging (SLR). The 2 kHz SLR station Graz measures spin parameters of this satellite, providing information about the rotational dynamics of the body. The measurements obtained during the period from September 26, 2009 to November 24, 2010 show a significant change of the spin configuration. The spin axis was dynamically precessing since the launch and currently is sinus-like behaving between coordinates RA 120°…150°, Dec 30°…60° (J2000 inertial reference frame). The angle between the symmetry axis and the spin axis of BLITS is not constant, but is decreasing since the launch, while its spin period is rather stable with a mean value of 5.613 s (clockwise rotation). The satellite was dynamically changing its attitude during the first three months after deployment; after this time the spin parameters are relatively stable.  相似文献   
10.
This describes a unique approach to performing high fidelity UHF circular array simulations on a High Performance Computer (HPC). Traditional airborne surveillance simulations have been limited in either spatial or temporal fidelity due to the expensive software and hardware requirements. Recently, advances have been made which provide the rapid deployment of high fidelity scenarios through a modular visual programming environment on an HPC. Based on the visual programming environment Khoros, the Radar Analysis Simulation Tool (RAST-K) is a flexible simulation for quickly prototyping airborne surveillance configurations containing radar system features, point targets, and USGS maps. Additionally, RAST-K has been ported to a Linux cluster to simulate realistic flight scenarios. As these scenarios involve changing characteristics between Coherent Processing Intervals (CPIs), additional interfaces were developed to control platform, target, and environmental attributes, as well as partition the simulations across the resource of processors. This paper will discuss these topics by providing an overview of the RAST-K simulation and its use in the simulation of a circular UHF antenna configuration. After which, the simulation of realistic flight scenarios through the use of the HPC is discussed, along with relevant results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号