首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
航空   2篇
航天技术   8篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2005年   2篇
  2002年   1篇
  2001年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
In this work a study is performed on the correlation between fast forward interplanetary shock parameters at 1 Astronomical Unit and sudden impulse (SI) amplitudes in the H-component of the geomagnetic field, for periods of solar activity maximum (year 2000) and minimum (year 1995–1996). Solar wind temperature, density and speed, and total magnetic field, were taken to calculate the static pressures (thermal and magnetic) both in the upstream and downstream sides of the shocks. The variations of the solar wind parameters and pressures were then correlated with SI amplitudes. The solar wind speed variations presented good correlations with sudden impulses, with correlation coefficients larger than 0.70 both in solar maximum and solar minimum, whereas the solar wind density presented very low correlation. The parameter better correlated with SI was the square root dynamic pressure variation, showing a larger correlation during solar maximum (r = 0.82) than during solar minimum (r = 0.77). The correlations of SI with square root thermal and magnetic pressure were smaller than with the dynamic pressure, but they also present a good correlation, with r > 0.70 during both solar maximum and minimum. Multiple linear correlation analysis of SI in terms of the three pressure terms have shown that 78% and 85% of the variance in SI during solar maximum and minimum, respectively, are explained by the three pressure variations. Average sudden impulse amplitude was 25 nT during solar maximum and 21 nT during solar minimum, while average square root dynamic pressure variation is 1.20 and 0.86 nPa1/2 during solar maximum and minimum, respectively. Thus on average, fast forward interplanetary shocks are 33% stronger during solar maximum than during solar minimum, and the magnetospheric SI response has amplitude 20% higher during solar maximum than during solar minimum. A comparison with theoretical predictions (Tsyganenko’s model corrected by Earth’s induced currents) of the coefficient of sudden impulse change with solar wind dynamic pressure variation showed excellent agreement, with values around 17 nT/nPa1/2.  相似文献   
2.
Solar variability effects studied by tree-ring data wavelet analysis   总被引:7,自引:0,他引:7  
The global change approach to study the Sun-Earth system gives a growing amount of evidences that climate dynamics is affected by a large number of factors. The solar variability is very likely to be among them. Natural records, such as tree ring data, can be investigated to study the past global and regional climate, which was influenced by the solar radiative output variations, associated to solar activity. Wavelet transform analysis was applied to sunspot number and tree ring width time series from 1837 to 1996 at Concórdia, Brazil. The amplitude and cross-amplitude spectral representation in the time-frequency domain allowed us to detect the occurrence of predominant periodicities and the relationship between the sunspot number and the tree ring time series. The Morlet complex wavelet analysis was used to study the most important variability factors on time scales ranging from from 2 to 100 years, and their stability in time, which is shown in both time series studied. We also applied the cross-wavelet spectral analysis to evaluate time delay among different tree ring time series, and between tree ring and sunspot number time series.  相似文献   
3.
In this article, we study fast shocks at CIR boundaries during an extended interval of 15 consecutive major high speed solar wind streams in 1992–1993. Ulysses was 4–5 AU from the sun. The Abraham-Schrauner shock normal method and the Rankine-Hugoniot relations were used to determine fast shock directions and speeds. Out of 33 potential CIR shocks, 14 were determined to be fast forward shocks (FSs) and 14 were fast reverse shocks (RSs). Of the remaining 5 events, 2 were forward waves and 3 were reverse waves. CIR edges at latitudes below ∼30o were, for the most part, bounded by fast magnetosonic shocks. The forward shocks were generally quasi-perpendicular (average θnBo = 67o). The reverse shocks were more oblique (average θnBo = 52o), but they extended to all angles. Both FSs and RSs had magnetosonic Mach numbers ranging from 1 to 5 or 6. The average Mach numbers were 2.4 and 2.6 for FSs and RSs, respectively. The shock Mach numbers were noted to generally decrease with increasing latitude. The non-shock events or waves were noted to occur preferentially at high (∼−30° to −35°) heliolatitudes where stream-stream interactions were presumably weaker. These results are consistent with expectations, indicating the general accuracy of the Abraham-Schrauner technique.  相似文献   
4.
During the first half of November 2004, many solar flares and coronal mass ejections (CMEs) were associated with solar active region (AR) 10696. This paper attempts to identify the solar and interplanetary origins of two superstorms which occurred on 8 and 10 November with peak intensities of Dst = −373 nT and −289 nT, respectively. Southward interplanetary magnetic fields within a magnetic cloud (MC), and a sheath + MC were the causes of these two superstorms, respectively. Two different CME propagation models [Gopalswamy, N., Yashiro, S., Kaiser, M.L. et al. Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207–29219, 2001; Gopalswamy, N.S., Lara, A., Manoharan, P.K. et al. An empirical model to predict the 1-AU arrival of interplanetary shocks. Adv. Space Res. 36, 2289–2294, 2005] were employed to attempt to identify the solar sources. It is found that the models identify several potential CMEs as possible sources for each of the superstorms. The two Gopalswamy et al. models give the possible sources for the first superstorm as CMEs on 2330 UT 4 November 2004 or on 1454 UT 5 November 2004. For the second superstorm, the possible solar source was a CME that on 0754 UT 5 November 2004 or one that occurred on 1206 UT 5 November 2004. We note that other propagation models sometimes agree and other times disagree with the above results. It is concluded that during high solar/interplanetary activity intervals such as this one, the exact solar source is difficult to identify. More refined propagation models are needed.  相似文献   
5.
We present a review on the interplanetary causes of intense geomagnetic storms (Dst≤−100 nT), that occurred during solar cycle 23 (1997–2005). It was reported that the most common interplanetary structures leading to the development of intense storms were: magnetic clouds, sheath fields, sheath fields followed by a magnetic cloud and corotating interaction regions at the leading fronts of high speed streams. However, the relative importance of each of those driving structures has been shown to vary with the solar cycle phase. Superintense storms (Dst≤−250 nT) have been also studied in more detail for solar cycle 23, confirming initial studies done about their main interplanetary causes. The storms are associated with magnetic clouds and sheath fields following interplanetary shocks, although they frequently involve consecutive and complex ICME structures. Concerning extreme storms (Dst≤−400 nT), due to the poor statistics of their occurrence during the space era, only some indications about their main interplanetary causes are known. For the most extreme events, we review the Carrington event and also discuss the distribution of historical and space era extreme events in the context of the sunspot and Gleissberg solar activity cycles, highlighting a discussion about the eventual occurrence of more Carrington-type storms.  相似文献   
6.
Observations of total ozone at low latitudes in Brazil have been made using Dobson spectrophotometers since 1974 for Cachoeira Paulista (23.1° S, 45° W) and since 1978 for Natal (5.8° S, 35.2° W). Annual averages, 12 months and 36 months running averages have been analyzed. Spectral analyses of the data revealed that the most important periods found (confidence level> 90%) were: for Natal, 2.5 years (93.1%, quasi-biennial oscillation-QBO) and 10 years (98,2%, possibly the solar cycle signal); for Cachoeira Paulista, 2.4 years (96.8%, QBO) and 8 years (99.6%). The difference in total ozone between maximum and minimum solar cycles were estimated, using yearly averages of total ozone. For solar cycle 21, 1.16% and 1.26% for Natal and Cachoeira Paulista were found; for solar cycle 22, a larger difference of 3.8% for Natal and 4.1% for Cachoeira Paulista were found. The corresponding variation in UV-B at 300 nm, using Beer's law, is 8–10% for C. Paulista and 4–5% for Natal, with maxima occurring during the minimum of the solar cycle.  相似文献   
7.
Plasma and magnetic field parameter variations through fast forward interplanetary shocks were correlated with the peak geomagnetic activity index Dst in a period from 0 to 3 days after the shock, during solar maximum (2000) and solar minimum (1995–1996). Solar wind speed (V) and total magnetic field (Bt) were the parameters with higher correlations with peak Dst index. The correlation coefficients were higher during solar minimum (r2 = 56% for V and 39% for Bt) than during solar maximum (r2 = 15% for V and 12% for Bt). A statistical distribution of geomagnetic activity levels following interplanetary shocks was obtained. It was observed that during solar maximum, 36% and 28% of interplanetary shocks were followed by intense (Dst  −100 nT) and moderate (−50  Dst < −100 nT) geomagnetic activity, whereas during solar minimum 13% and 33% of the shocks were followed by intense and moderate geomagnetic activity. It can be concluded that the upstream/downstream variations of V and Bt through the shocks were the parameters better correlated with geomagnetic activity level, and during solar maximum a higher relative number of interplanetary shocks can be followed by intense geomagnetic activity than during solar minimum. One can extrapolate, for forecasting goals, that during a whole solar cycle a shock has a probability of around 50% to be followed by intense/moderate geomagnetic activity.  相似文献   
8.
9.
Foreshock and magnetosheath waves in Uranus and Neptune magnetospheres are studied in this work with wavelet analysis. In order to conduct this study, Voyager-2 magnetometer 3-s averaged data are used. The Morlet wavelet transform is applied to the magnetic field vector data. Waves present in the magnetosheath and foreshock regions are highly non-stationary, showing large amplitude variations. It was found that the dominant periods of these waves are longer than the H+ cyclotron period. Overall, high frequency waves are seen near the bow shock crossing and low frequency oscillations near the magnetopause crossing. It can be concluded that non-stationary foreshock and magnetosheath planetary waves can be well characterized with wavelet analysis.  相似文献   
10.
In this work, we summarize the development and current status of the Global Muon Detector Network (GMDN). The GMDN started in 1992 with only two muon detectors. It has consisted of four detectors since the Kuwait-city muon hodoscope detector was installed in March 2006. The present network has a total of 60 directional channels with an improved coverage of the sunward Interplanetary Magnetic Field (IMF) orientation, making it possible to continuously monitor cosmic ray precursors of geomagnetic storms. The data analysis methods developed also permit precise calculation of the three dimensional cosmic ray anisotropy on an hourly basis free from the atmospheric temperature effect and analysis of the cosmic ray precursors free from the diurnal anisotropy of the cosmic ray intensity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号