首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   0篇
  国内免费   3篇
航空   43篇
航天技术   25篇
航天   40篇
  2021年   4篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   9篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   6篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1980年   2篇
  1975年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
1.
The low gravity of a small asteroid would present a challenge for an astronaut attempting to work on its surface. Extravehicular activities (EVAs) of the sophistication of the Apollo Moon missions are not likely to be possible if astronauts attempt to walk freely on the asteroid, hover above its surface, or anchor locally into the regolith. Manipulating large rocks, drilling, and excavating at multiple locations is a high priority science objective, but would be difficult without a hold-down mechanism. If the asteroid has even a small rotation rate, maneuvering precisely over its surface could be cumbersome. A plausible means of conducting complex EVAs is to tie ropes entirely around the asteroid, under which the astronaut is pushed downward onto the asteroid surface by the tension in the rope. The downward force provides an artificial gravity that permits the astronaut to drill, excavate, hammer, and carefully document materials on the surface without the worry of being thrown from the asteroid. An astronaut could also use the ropes as handholds or guides to maneuver freely over the surface.  相似文献   
2.
Abstract Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10?μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission. Key Words: Astrobiology-Habitability-Enceladus-Biosignatures. Astrobiology 12, 730-742.  相似文献   
3.
Head-down tilt models have been used as ground-based simulations of microgravity. Our previous animal research has demonstrated that there are significant changes in fluid distribution within 2 h after placement in a 45 degrees head-down tilt (45HDT) position and these changes in fluid distribution were still present after 14 days of 45HDT. Consequently, we investigated changes in fluid distribution during recovery from 16 days of 45HDT. Changes in radioactive tracer distribution and organ/body weight ratio were examined in rats randomly assigned to a 45HDT or prone control group. The 45HDT rats were suspended for 16 days and then allowed to recover at the prone position 0, 77, 101, or 125 h post-suspension. Animals were injected with technetium-labeled diethylenetriamine pentaacetate (99mTcDTPA, MW=492 amu, physical half-life of 6.02 h) and then killed 30 min post-injection. Lungs, heart, liver, spleen, kidneys, and brain were harvested, weighed, and measured for radioactive counts. Statistical analyses included two-way analysis of variance (ANOVA) that compared 45HDT versus controls at the four experimental time points. The organ weight divided by the body weight ratio for the brain, heart, kidneys and liver in the 45HDT rats was significantly different than the control rats, regardless of time (treatment). There was no difference between the different time points (time). The average 99mTcDTPA count divided by the organ weight ratio values for the heart, liver, and spleen were significantly higher in the 45HDT group than the control group. The average counts for the heart and spleen were significantly higher at 77, 101, and 125 h than at time zero. We conclude that the major organs have different recovery patterns after 45HDT for 16 days in the rat.  相似文献   
4.
The Miniature Radio Frequency (Mini-RF) system is manifested on the Lunar Reconnaissance Orbiter (LRO) as a technology demonstration and an extended mission science instrument. Mini-RF represents a significant step forward in spaceborne RF technology and architecture. It combines synthetic aperture radar (SAR) at two wavelengths (S-band and X-band) and two resolutions (150 m and 30 m) with interferometric and communications functionality in one lightweight (16 kg) package. Previous radar observations (Earth-based, and one bistatic data set from Clementine) of the permanently shadowed regions of the lunar poles seem to indicate areas of high circular polarization ratio (CPR) consistent with volume scattering from volatile deposits (e.g. water ice) buried at shallow (0.1–1 m) depth, but only at unfavorable viewing geometries, and with inconclusive results. The LRO Mini-RF utilizes new wideband hybrid polarization architecture to measure the Stokes parameters of the reflected signal. These data will help to differentiate “true” volumetric ice reflections from “false” returns due to angular surface regolith. Additional lunar science investigations (e.g. pyroclastic deposit characterization) will also be attempted during the LRO extended mission. LRO’s lunar operations will be contemporaneous with India’s Chandrayaan-1, which carries the Forerunner Mini-SAR (S-band wavelength and 150-m resolution), and bistatic radar (S-Band) measurements may be possible. On orbit calibration, procedures for LRO Mini-RF have been validated using Chandrayaan 1 and ground-based facilities (Arecibo and Greenbank Radio Observatories).  相似文献   
5.
Auroral emission caused by electron precipitation (Hardy et al., 1987, J. Geophys. Res. 92, 12275–12294) is powered by magnetospheric driving processes. It is not yet fully understood how the energy transfer mechanisms are responsible for the electron precipitation. It has been proposed (Hasegawa, 1976, J. Geophys. Res. 81, 5083–5090) that Alfvén waves coming from the magnetosphere play some role in powering the aurora (Wygant et al., 2000, J. Geophys. Res. 105, 18675–18692, Keiling et al., 2003, Science 299, 383–386). Alfvén-wave-induced electron acceleration is shown to be confined in a rather narrow radial distance range of 4–5 R E (Earth radii) and its importance, relative to other electron acceleration mechanisms, depends strongly on the magnetic disturbance level so that it represents 10% of all electron precipitation power during quiet conditions and increased to 40% during disturbed conditions. Our observations suggest that an electron Landau resonance mechanism operating in the “Alfvén resonosphere” is responsible for the energy transfer.  相似文献   
6.
House CH 《Astrobiology》2003,3(2):245-247
  相似文献   
7.
Gas Turbine Engines (GTEs) are vastly used for generation of mechanical power in a wide range of applications from airplane propulsion systems to stationary power plants. The gas-path components of a GTE are exposed to harsh operating and ambient conditions, leading to several degradation mechanisms. Because GTE components are mostly inaccessible for direct measurements and their degradation levels must be inferred from the measurements of accessible parameters, it is a challenge to acquire reliable information on the degradation conditions of the parts in different fault modes. In this work, a data-driven fault detection and degradation estimation scheme is developed for GTE diagnostics based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). To verify the performance and accuracy of the developed diagnostic framework on GTE data, an ensemble of measurable gas path parameters has been generated by a high-fidelity GTE model under (a) diverse ambient conditions and control settings, (b) every possible combination of degradation symptoms, and (c) a broad range of signal to noise ratios. The results prove the competency of the developed framework in fault diagnostics and reveal the sensitivity of diagnostic results to measurement noise for different degradation symptoms.  相似文献   
8.
9.
Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号