首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
航空   1篇
航天技术   3篇
航天   1篇
  2020年   1篇
  2018年   1篇
  2014年   1篇
  2009年   2篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Parameterization schemes of atmospheric normal modes (NMs) and orographic gravity waves (OGWs) have been implemented into the mechanistic Middle and Upper Atmosphere Model (MUAM) simulating atmospheric general circulation. Based on the 12-members ensemble of runs with the MUAM, a composite of the stratospheric warming (SW) has been constructed using the UK Met Office data as the lower boundary conditions. The simulation results show that OGW amplitudes increase at altitudes above 30 km in the Northern Hemisphere after the SW event. At altitudes of about 50 km, OGWs have largest amplitudes over North American and European mountain systems before and during the composite SW, and over Himalayas after the SW. Simulations demonstrate substantial (up to 50–70%) variations of amplitudes of stationary planetary waves (PWs) during and after the SW in the mesosphere-lower thermosphere of the Northern Hemisphere. Westward travelling NMs have amplitude maxima not only in the Northern, but also in the Southern Hemisphere, where these modes have waveguides in the middle and upper atmosphere. Simulated variations of PW and NM amplitudes correspond to changes in the mean zonal wind, EP-fluxes and wave refractive index at different phases of the composite SW events. Inclusion of the parameterization of OGW effects leads to decreases in amplitudes (up to 15%) of almost all SPWs before and after the SW event and their increase (up to 40–60%) after the SW in the stratosphere and mesosphere at middle and high northern latitudes. It is suggested that observed changes in NM amplitudes in the Southern Hemisphere during SW could be caused by divergence of increased southward EP-flux. This EP-flux increases due to OGW drag before SW and extends into the Southern Hemisphere.  相似文献   
2.
By the data on intensity-time profiles of the neutron capture line of 2.223 MeV we have studied some characteristics of two solar flares, 28 October 2003 and 20 January 2005 (INTEGRAL and CORONAS-F observations, respectively). The SINP code was applied making allowance for the main processes of neutron interactions and deceleration in the solar plasma, character of neutron source, losses of neutrons and density model of the solar atmosphere. Comparison of the computed time profiles of 2.223 MeV line with observed ones for the flare of 28 October 2003 confirms the results obtained earlier for three other flares. Namely, the effect of density enhancement (EDE) in the sub-flare region, as well as the variations (hardening) of accelerated particle spectrum in the course of the event have been confirmed. The usual modeling procedure by the SINP code, however, seems to be inapplicable to the event of 20 January 2005. Possible causes of density enhancements during some flares and peculiarities of the 20 January 2005 flare are discussed.  相似文献   
3.
为了发展基于电推进的大功率空间运输系统,需要开发和验证功率达数十千瓦的电推进系统,深空任务电推进系统优化的比冲要求高达105s。凯尔迪什研究中心(KeRC)正在开发这样的电推进部件。本文概述了 35kW离子推力器 IT-500及其流动单元FCU-500的验证现状。作为其验证的一部分,完成了IT-500 和 FCU-500的2000h寿命试验。其中,离子推力器大部分验证条件是:输入功率17.8kW,使用了40kg氙,2018h寿命试验。本文介绍了磁场和离子光学以及石墨格栅开发现状。  相似文献   
4.
Assessment was made by calculations for the possible consequences of the effect of plasma plume injected by the solar electric propulsion system (SEPS) on the structural components of “Phobos-Soil” spacecraft (SC). Propulsion system comprises three SPT-140 thrusters, two of which should secure the required total thrust impulse during 8000 hours of operation approximately. Variation of the solar panel (SP) properties as a result of their surface contamination with the products of erosion of thruster and SC structural components is the primary negative consequence of plasma plume effect on the SC. Calculation study for the processes of erosion, particle flow distribution, and contaminating coating formation on the SP surface was made for different SEPS arrangements. It is shown that power reduction for the landing module SP sections, which are subjected to the contaminating coating deposition to the most extent, will not exceed 5% of the nominal level.  相似文献   
5.
The main goals of the Chibis-M mission are the testing of a new micro-satellite technology, the study of new physical processes related to lightning activity and the verification of possible monitoring techniques of Space Weather phenomena. In frames of the Chibis-M mission an electromagnetic wave complex MWC is installed on board of the satellite composed of electromagnetic sensors and SAS3 measuring unit. The obtained data show that the scientific instrumentation operates properly and produces interesting information. Here we present the first results of the first year of operation of the MWC in the ELF–VLF bands in different operation modes. An important conclusion is that basing on the experience of the first year it is possible to realize an effective and reliable Space Weather monitoring system using micro-satellites and simultaneously operating ground support equipments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号