首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   7篇
航空   41篇
航天技术   55篇
综合类   1篇
航天   24篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   9篇
  2013年   7篇
  2012年   5篇
  2011年   12篇
  2010年   7篇
  2009年   7篇
  2008年   8篇
  2007年   4篇
  2006年   9篇
  2005年   1篇
  2004年   4篇
  2003年   5篇
  2001年   2篇
  2000年   2篇
  1996年   2篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1970年   1篇
  1968年   2篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
1.
Many challenges are presented by biological degradation in a bioregenerative Controlled Ecological Life Support System as envisioned by the U.S. National Aeronautics and Space Administration. In studies conducted with biodegradative microorganisms indigenous to sweetpotato fields, it was determined that a particle size of 75 microns and incubation temperature of 30°C were optimal for degradation. The composition of the biomass and characterization of plant nutrient solution indicated the presence of potential energy sources to drive microbial transformations of plant waste. Selected indigenous soil isolates with ligno-cellulolytic or sulfate-reducing ability were utilized in biological studies and demonstrated diversity in their ability to reduce sulfate in solution and to utilize alternative carbon sources: a lignin analog 4-hydroxy, 3-methoxy cinnamic acid, cellulose, arabinose, glucose, sucrose, mannitol, galactose, ascorbic acid.  相似文献   
2.
The Planetary Radio Astronomy instruments on Voyager 1 and 2 provided new, highly detailed measurements of several different kinds of strong, nonthermal radiation generated in the inner magnetospheres and upper ionospheres of Jupiter and Saturn. At Jupiter, an intense decameter-wavelength component (between a few tenths of a MHz and 39.5 MHz) is characterized by complex, highly organized structure in the frequency-time domain and by a strong dependence on the longitude of the observer and, in some cases, of Io. At frequencies below about 1 MHz there exists a (principally) kilometer-wavelength component of emission that is bursty, relatively broadbanded (typically covering 10 to 1000 kHz), and strongly modulated by planetary rotation. The properties of this component are consistent with a source confined to high latitudes on the dayside hemisphere of Jupiter. A second kilometric component is narrow-banded, relatively weak and exhibits a spectral peak near 100 kHz. The narrowband component also occurs periodically but at a repetition rate that is a few percent slower than that corresponding to the planetary rotation rate. This component is thought to originate at a frequency near the electron plasma frequency in the outer part of the Io plasma torus (8 to 10 RJ) and to reflect the small departures from perfect corotation experienced by plasma there.The Voyager instruments also detected intense, low frequency, radio emissions from the Saturn system. The Saturnian kilometric radiation is observed in a relatively narrow frequency band between 3 kHz and 1.2 MHz, is elliptically or circularly polarized, and is strongly modulated in intensity at Saturn's 10.66-hr rotation period. This emission is believed to be emitted in the right-hand extraordinary mode from regions near or in Saturn's dayside, polar, magnetospheric cusps. Variations in intensity at Saturn's rotation period may correspond to the rotation of a localized magnetic anomaly into the vicinity of the ionospheric footprint of the polar cusp. Variations in activity on time scales of a few days and longer seem to indicate that both the solar wind and the satellite Dione can also influence the generation of the radio emission.  相似文献   
3.
Recent studies of the lunar ejecta from lunar impacts of interplanetary dust particles indicate that during favorable lunar phases, over 80% of the submicron ejecta enters the earth's magnetosphere. This “pulse” of lunar ejecta produced by the sporadic meteor background will follow the random variations of the sporadic flux. An additional enhancement of this flux can be related to major meteor showers. Since the annual periods of these showers occur during varying lunar phase angles, magnetosphere ejecta flux associated with major showers will vary depending on the coincidence of shower periods and favorable lunar phase angles. The results of an analysis of the “pulse” of ejecta flux in the magnetosphere during the Quadrantids, Geminids, Leonids, and Perseids meteor showers are presented. These results are compared to the satellite measurements of 1959 Eta and HEOS II.  相似文献   
4.
5.
    
Coronal loops, which trace closed magnetic field lines, are the primary structural elements of the solar atmosphere. Complex dynamics of solar coronal magnetic loops, together with action of possible subphotospheric dynamo mechanisms, turn the majority of the coronal loops into current-carrying structures. In that connection none of the loops can be considered as isolated from the surroundings. The current-carrying loops moving relative to each other interact via the magnetic field and currents. One of the ways to take into account this interaction consists in application of the equivalent electric circuit models of coronal loops. According to these models, each loop is considered as an equivalent electric LCR-circuit with variable inductive coefficients L, capacitance C, and resistance R, which depend on shape, scale, position of the loop with respect to neighbouring loops, as well as on the plasma parameters in the magnetic tube. Such an approach enables to describe the process of electric current dynamics in the groups of coronal loops, as well as the related dynamical, energy release and radiation processes. In the present paper we describe the major principles of LCR-circuit models of coronal magnetic loops, and show their application for interpretation of the observed oscillatory phenomena in the loops and in the related radiation.  相似文献   
6.
We use the 8-year long satellite temperature data (2002–2010) from Atmospheric InfraRed Sounder (AIRS) and Atmospheric Microwave Sounding Unit (AMSU) on the Aqua satellite to identify temperature trends in the troposphere and low stratosphere over the Niño 3.4 region of the Tropical Pacific Ocean in the most recent 11-year solar cycle. Employing more extended sea surface temperature (SST) data for five solar cycles (1950–2009) in this region we show that the satellite trends reflect a typical decrease of the sea surface temperature (SST) in the Niño 3.4 region in the declining phase of the solar cycle. The magnitude of the SST decrease depends on the solar cycle and ranges between 0.07 K/yr and 0.27 K/yr for the last five solar cycles.  相似文献   
7.
The Pre-CME Sun     
The coronal mass ejection (CME) phenomenon occurs in closed magnetic field regions on the Sun such as active regions, filament regions, transequatorial interconnection regions, and complexes involving a combination of these. This chapter describes the current knowledge on these closed field structures and how they lead to CMEs. After describing the specific magnetic structures observed in the CME source region, we compare the substructures of CMEs to what is observed before eruption. Evolution of the closed magnetic structures in response to various photospheric motions over different time scales (convection, differential rotation, meridional circulation) somehow leads to the eruption. We describe this pre-eruption evolution and attempt to link them to the observed features of CMEs. Small-scale energetic signatures in the form of electron acceleration (signified by nonthermal radio bursts at metric wavelengths) and plasma heating (observed as compact soft X-ray brightening) may be indicative of impending CMEs. We survey these pre-eruptive energy releases using observations taken before and during the eruption of several CMEs. Finally, we discuss how the observations can be converted into useful inputs to numerical models that can describe the CME initiation.  相似文献   
8.
Solar and stellar activity is a result of complex interaction between magnetic field, turbulent convection and differential rotation in a star’s interior. Magnetic field is believed to be generated by a dynamo process in the convection zone. It emerges on the surface forming sunspots and starspots. Localization of the magnetic spots and their evolution with the activity cycle is determined by large-scale interior flows. Thus, the internal dynamics of the Sun and other stars hold the key to understanding the dynamo mechanism and activity cycles. Recently, significant progress has been made for modeling magnetohydrodynamics of the stellar interiors and probing the internal rotation and large-scale dynamics of the Sun by helioseismology. Also, asteroseismology is beginning to probe interiors of distant stars. I review key achievements and challenges in our quest to understand the basic mechanisms of solar and stellar activity.  相似文献   
9.
Parameterization schemes of atmospheric normal modes (NMs) and orographic gravity waves (OGWs) have been implemented into the mechanistic Middle and Upper Atmosphere Model (MUAM) simulating atmospheric general circulation. Based on the 12-members ensemble of runs with the MUAM, a composite of the stratospheric warming (SW) has been constructed using the UK Met Office data as the lower boundary conditions. The simulation results show that OGW amplitudes increase at altitudes above 30 km in the Northern Hemisphere after the SW event. At altitudes of about 50 km, OGWs have largest amplitudes over North American and European mountain systems before and during the composite SW, and over Himalayas after the SW. Simulations demonstrate substantial (up to 50–70%) variations of amplitudes of stationary planetary waves (PWs) during and after the SW in the mesosphere-lower thermosphere of the Northern Hemisphere. Westward travelling NMs have amplitude maxima not only in the Northern, but also in the Southern Hemisphere, where these modes have waveguides in the middle and upper atmosphere. Simulated variations of PW and NM amplitudes correspond to changes in the mean zonal wind, EP-fluxes and wave refractive index at different phases of the composite SW events. Inclusion of the parameterization of OGW effects leads to decreases in amplitudes (up to 15%) of almost all SPWs before and after the SW event and their increase (up to 40–60%) after the SW in the stratosphere and mesosphere at middle and high northern latitudes. It is suggested that observed changes in NM amplitudes in the Southern Hemisphere during SW could be caused by divergence of increased southward EP-flux. This EP-flux increases due to OGW drag before SW and extends into the Southern Hemisphere.  相似文献   
10.
Interstellar material is highly processed when subjected to the physical conditions that prevail in the inner regions of protoplanetary disks, the potential birthplace of habitable planets. Polycyclic aromatic hydrocarbons (PAHs) are abundant in the interstellar medium, and they have also been observed in the disks around young stars, with evidence for some modification in the latter. Using a chemical model developed for sooting flames, we have investigated the chemical evolution of PAHs in warm (1000–2000 K) and oxygen-rich (C/O < 1) conditions appropriate for the region where habitable planets may eventually form. Our study focuses on (1) delineating the conditions under which PAHs will react and (2) identifying the key reaction pathways and reaction products characterizing this chemical evolution. We find that reactions with H, OH and O are the main pathways for destroying PAHs over disk timescale at temperatures greater than about 1000 K. In the process, high abundances of C2H2 persist over long timescales due to the kinetic inhibition of reactions that eventually drive the carbon into CO, CO2 and CH4. The thermal destruction of PAHs may thus be the cause of the abundant C2H2 that has been observed in disks. We propose that protoplanetary disks have a ‘soot line’, within which PAHs are irreversibly destroyed via thermally-driven reactions. The soot line will play an important role, analogous to that of the ‘snow line’, in the bulk carbon content of meteorites and habitable planets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号