首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
航空   9篇
航天技术   3篇
  2013年   1篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有12条查询结果,搜索用时 312 毫秒
1.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
2.
Meteor Phenomena and Bodies   总被引:12,自引:0,他引:12  
Meteoroids can be observed at collision with the Earth's atmosphere as meteors. Different methods of observing meteors are presented: besides the traditional counts of individual events, exact methods yield also data on the geometry of the atmospheric trajectory; on the dynamics and ablation of the body in the atmosphere; on radiation; on the spectral distribution of radiation; on ionization; on accompanying sounds; and also data on orbits. Theoretical models of meteoroid interaction with the atmosphere are given and applied to observational data. Attention is paid to radar observations; to spectroscopic observations; to experiments with artificial meteors and to different types of meteor sounds. The proposed composition and structure of meteoroids as well as their orbits link them to meteorites, asteroids and comets. Meteor streams can be observed as meteor showers and storms. The rate of influx of meteoroids of different sizes onto Earth is presented and potential hazards discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
4.
We have selected four widely different flares from the early period of operations of the Hard X-Ray Imaging Spectrometer (HXIS) on SMM to illustrate the characteristic imaging properties of this experiment. For the small flare of April 4, 1980, we demonstrate the instrument's capability for locating a compact source. In the weak, but extensive, flare of April 6 we show how well the instrument can display spatial structure, and also the low level of the instrument background. In the 1B flare of April 7 we are able to locate positions of the X-ray emission in the soft and hard channels, and estimate the positional variations of the emission patches. Finally, in the IN flare of April 10, which produced the strongest hard X-ray burst we have seen so far, we repeat some of the studies made for the April 7 event, and also demonstrate the capability of the HXIS instrument to study the development, with high time resolution, of individual 8″ × 8″ elements of the flare.  相似文献   
5.
6.
Varieties of Coronal Mass Ejections and Their Relation to Flares   总被引:1,自引:0,他引:1  
Most coronal mass ejections (CMEs) start as coronal storms which are caused by an opening of channels of closed field lines along the zero line of the longitudinal magnetic field. This can happen along any zero line on the Sun where the configuration is destabilized. If the opening includes a zero line inside an active region, one observes a chromospheric flare. If this does not happen, no flare is associated with the CME in the chromosphere, but the process, as well as the response in the corona (a Long Decay Event in X-rays) remains the same. The only difference between flare-associated and non-flare-associated CMEs is the strength of the magnetic field in the region of the field line opening. This can explain essentially all differences which have been observed between these two kinds of CMEs. However, there are obviously also other sources of CMEs, different from coronal storms: sprays (giving rise to narrow, pointed ejections), erupting interconnecting loops (often destabilized by flares), and growing coronal holes. This paper tries to summarize and interpret observations which support this general picture, and demonstrates that both CMEs and flares must be properly discussed in any study of solar-terrestrial relations.  相似文献   
7.
8.
The Solar Maximum Year is a world-wide cooperative project to gain more insight in certain aspects of solar flares. It consists of three sub-programs: The Flare Build-up Study (FBS), the Study of Energy Release from Flares (SERF), and the Study of Travelling Interplanetary Phenomena (STIP). These programs are described. We also describe space observations to be performed during SMY, particularly the Solar Maximum Mission Satellite.Invited talk, presented at 22nd COSPAR Meeting in Bangalore on 7 June, 1979.  相似文献   
9.
We describe the development of the limb flare of 30 April 1980, 20:20 UT, as observed by the Hard X-ray Imaging Spectrometer (HXIS) aboard the Solar Maximum Mission (SMM). It consisted of a short-lived bright nucleus (FWHM < 10,000 km), just inside the Sun's limb; a longer lasting tongue, extending to a height of 30,000 km, and a more complicated feature, approximately situated at the Sun's limb. The tongue was a pre-existing magnetic structure that started emitting X-rays only a few seconds after the bright nucleus, and which had a slightly higher temperature than the nucleus; its X-ray emission may be caused by electrons escaped from the nucleus.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号