首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
航空   6篇
航天技术   3篇
航天   2篇
  2019年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  1983年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
2.
The development of large and precise space antennas is one of the most important topics in constructing space infrastructures. We evaluated an approach to assembling large and accurate space antennas which uses space robots. The assembly mechanism was launched together with the ETS-VII, the first telerobotic satellite from Japan, and its performance, including fully automatic assembling, was verified. The assembling-type antenna and the results of antenna assembly experiments are discussed  相似文献   
3.
The Mercury Magnetopsheric Orbiter (MMO) is one of the spacecraft of the BepiColombo mission; the mission is scheduled for launch in 2014 and plans to revisit Mercury with modern instrumentation. MMO is to elucidate the detailed plasma structure and dynamics around Mercury, one of the least-explored planets in our solar system. The Mercury Plasma Particle Experiment (MPPE) on board MMO is a comprehensive instrument package for plasma, high-energy particle, and energetic neutral particle atom measurements. The Mercury Ion Analyzer (MIA) is one of the plasma instruments of MPPE, and measures the three dimensional velocity distribution of low-energy ions (from 5 eV to 30 keV) by using a top-hat electrostatic analyzer for half a spin period (2 s). By combining both the mechanical and electrical sensitivity controls, MIA has a wide dynamic range of count rates for the proton flux expected around Mercury, which ranges from 106 to 1012 cm−2 s−1 str−1 keV−1, in the solar wind between 0.3 and 0.47 AU from the sun, and in both the hot and cold plasma sheet of Mercury’s magnetosphere. The geometrical factor of MIA is variable, ranging from 1.0 × 10−7 cm2 str keV/keV for large fluxes of solar wind ions to 4.7 × 10−4 cm2 str keV/keV for small fluxes of magnetospheric ions. The entrance grid used for the mechanical sensitivity control of incident ions also work to significantly reduce the contamination of solar UV radiation, whose intensity is about 10 times larger than that around Earth’s orbit.  相似文献   
4.
Pratt  G. W.  Arnaud  M.  Biviano  A.  Eckert  D.  Ettori  S.  Nagai  D.  Okabe  N.  Reiprich  T. H. 《Space Science Reviews》2019,215(2):1-19
Space Science Reviews - The QB50 mission is a satellite constellation designed to carry out measurements at between 200–380 km altitude in the ionosphere. The multi-needle Langmuir probe...  相似文献   
5.
Communications transponder for the Japanese Communications Satellite-2 (CS-2a and 2b) to be launched into a geostationary orbit by N-II launch vehicle in February and August, 1983, has been developed. The transponder is provided with six-channel K-band (3020GHz) transponder including beacon transmitter, which operates in the highest frequency ranges ever utilized on an operational communications satellite, and two-channel C-band (64GHz) transponder. Receiver front end of the K-band transponder consists of a direct mixer followed by a 1.8 GHz IF amplifier and provides 8 dB noise figure. 20 GHz output power is 4 W by final amplification at 5-W TWTA. C-band transponder provides 4 dB noise figure and 4.3-W output power. Key factors for future high capacity transponder are also presented.  相似文献   
6.
We investigated the in-orbit performance of a high-performance on-board computer developed with commercial off-the-shelf (COTS) technology in terms of its performance during the occurrence of single event effects. The processor worked and performed successfully both under normal and under solar flare conditions in 800 km altitude polar orbit. During a solar flare, the occurrence of single events increased by a factor of more than four compared with normal conditions. The area where single events occurred during the solar flare spread to the polar region, whereas normally they are limited to the region of South-Atlantic anomalies (SAA). Our results suggest that the performance of our COTS processor is sufficient for future space applications.  相似文献   
7.
Despite huge amount of data collected by the previous interplanetary spacecraft and probes, the origin and evolution of the solar system still remains unveiled due to limited information they brought back. Thus, the Institute of Space and Astronautical Science (ISAS) of Japan has been given a commitment to pave the way to an asteroid sample return mission: the MUSES-C project. A key to success is considered the reentry with hyperbolic velocity, which has not ever been demonstrated as yet. With this as background, a demonstrator of atmospheric reentry system, DASH, has been designed to demonstrate the high-speed reentry technology as a GTO piggyback mission. The capsule, identical to that of the sample return mission, can experience the targeted level of thermal environment even from the GTO by tracing a specially designed reentry trajectory. After the purpose of the mission was outlined at the last IAF symposium, the final fitting tests have been conducted in the ISAS Sagamihara Campus involving the flight model hardware. Furthermore, a series of rehearsals for recovery have been already executed. The paper describes the current mission status of the project.  相似文献   
8.
9.
The idea of expedient energy transformation by magnetic reconnection (MR) has generated much enthusiasm in the space plasma community. The early concept of MR, which was envisioned for the solar flare phenomenon in a simple two-dimensional (2D) steady-state situation, is in dire need for extension to encompass three-dimensional (3D) non-steady-state phenomena prevalent in space plasmas in nature like in the magnetosphere. A workshop was organized to address this and related critical issues on MR. The essential outcome of this workshop is summarized in this review. After a brief evaluation on the pros and cons of existing definitions of MR, we propose essentially a working definition that can be used to identify MR in transient and spatially localized phenomena. The word “essentially” reflects a slight diversity in the opinion on how transient and localized 3D MR process might be defined. MR is defined here as a process with the following characteristics: (1) there is a plasma bulk flow across a boundary separating regions with topologically different magnetic field lines if projected on the plane of MR, thereby converting magnetic energy into kinetic particle energy, (2) there can be an out-of-the-plane magnetic field component (the so-called guide field) present such that the reconnected magnetic flux tubes are twisted to form flux ropes, and (3) the region exhibiting non-ideal MHD conditions should be localized to a scale comparable to the ion inertial length in the direction of the plasma inflow velocity. This definition captures the most important 3D aspects and preserves many essential characteristics of the 2D case. It may be considered as the first step in the generalization of the traditional 2D concept. As a demonstration on the utility of this definition, we apply it to identify MR associated with plasma phenomena in the dayside magnetopause and nightside magnetotail of the Earth’s magnetosphere. How MR may be distinguished from other competing mechanisms for these magnetospheric phenomena are then discussed.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
10.
It is a crucial issue to know where magnetic reconnection takes place in the near-Earth magnetotail for substorm onsets. It is found on the basis of Geotail observations that the factor that controls the magnetic reconnection site in the magnetotail is the solar wind energy input. Magnetic reconnection forms close to (far from) the Earth in the magnetotail for high (low) solar wind energy input conditions.With the early Vela spacecraft observations, it was believed that magnetic reconnection started inside the Vela position, likely at 15 RE. The later ISEE/IRM observations put magnetic reconnection beyond 20 RE. The Vela event studies were made for highly active conditions, while the ISEE/IRM survey studies were made for moderate or quiet conditions. The finding of the factor that controls the site of magnetic reconnection in the magnetotail resolves the apparent discrepancy among various spacecraft results, and suggests solar cycle variation of the magnetotail reconnection site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号