首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   1篇
航天技术   5篇
航天   1篇
  2019年   1篇
  2014年   2篇
  2011年   2篇
  2010年   1篇
  1990年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The advent of modernized and new global navigation satellite systems (GNSS) has enhanced the availability of satellite based positioning, navigation, and timing (PNT) solutions. Specifically, it increases redundancy and yields operational back-up or independence in case of failure or unavailability of one system. Among existing GNSS, the Chinese BeiDou system (BDS) is being developed and will consist of geostationary (GEO) satellites, inclined geosynchronous orbit (IGSO) satellites, and medium-Earth-orbit (MEO) satellites. In this contribution, a BeiDou–GPS robustness analysis is carried out for instantaneous, unaided attitude determination.  相似文献   
2.
GNSS (Global Navigation Satellite Systems)-based attitude determination is an important field of study, since it is a valuable technique for the orientation estimation of remote sensing platforms. To achieve highly accurate angular estimates, the precise GNSS carrier phase observables must be employed. However, in order to take full advantage of the high precision, the unknown integer ambiguities of the carrier phase observables need to be resolved. This contribution presents a GNSS carrier phase-based attitude determination method that determines the integer ambiguities and attitude in an integral manner, thereby fully exploiting the known body geometry of the multi-antennae configuration. It is shown that this integral approach aids the ambiguity resolution process tremendously and strongly improves the capacity of fixing the correct set of integer ambiguities. In this contribution, the challenging scenario of single-epoch, single-frequency attitude determination is addressed. This guarantees a total independence from carrier phase slips and losses of lock, and it also does not require any a priori motion model for the platform. The method presented is a multivariate constrained version of the popular LAMBDA method and it is tested on data collected during an airborne remote sensing campaign.  相似文献   
3.
Traditionally in multi-spacecraft missions (e.g. formation flying, rendezvous) the GNSS-based relative positioning and attitude determination problem are treated as independent. In this contribution we will investigate the possibility to use multi-antenna data from each spacecraft, not only for attitude determination, but also to improve the relative positioning between spacecraft. Both for ambiguity resolution and accuracy of the baseline solution, we will show the theoretical improvement achievable as a function of the number of antennas on each platform. We concentrate on ambiguity resolution as the key to precise relative positioning and attitude determination and will show the theoretical limit of this kind of approach. We will use mission parameters of the European Proba-3 satellites in a software-based algorithm verification and a hardware-in-the-loop simulation. The software simulations indicated that this approach can improve single epoch ambiguity resolution up to 50% for relative positioning applying the typical antenna configurations for attitude determination. The hardware-in-the-loop simulations show that for the same antenna configurations, the accuracy of the relative positioning solution can improve up to 40%.  相似文献   
4.
The evolving BeiDou Navigation Satellite System constellation brings new opportunities for high-precision applications. In this contribution the focus will be on one such application, namely precise and instantaneous relative navigation of a formation of LEO satellites. The aim is to assess the ambiguity resolution performance with the future GPS and BeiDou constellations depending on system choice (GPS, BeiDou, or GPS+BeiDou), single- or dual-frequency observations, receiver noise, and uncertainties in ionosphere modelling. In addition, for the GPS+BeiDou constellation it will be shown how the growing BeiDou constellation in the years to come can already bring an important performance improvement compared to the GPS-only case. The performance will be assessed based on the percentage of time that the required precision can be obtained with a partial ambiguity resolution strategy.  相似文献   
5.
GNSS-based precise relative positioning between spacecraft normally requires dual frequency observations, whereas attitude determination of the spacecraft, mainly due to the stronger model given by the a priori knowledge of the length and geometry of the baselines, can be performed precisely using only single frequency observations. When the Galileo signals will come available, the number of observations at the L1 frequency will increase as we will have a GPS and Galileo multi-constellation. Moreover the L1 observations of the Galileo system and modernized GPS are more precise than legacy GPS and this, combined with the increased number of observations, will result in a stronger model for single frequency relative positioning. In this contribution we will develop an even stronger model by combining the attitude determination problem with relative positioning. The attitude determination problem will be solved by the recently developed Multivariate Constrained (MC-) LAMBDA method. We will do this for each spacecraft and use the outcome for an ambiguity constrained solution on the baseline between the spacecraft. In this way the solution for the unconstrained baseline is bootstrapped from the MC-LAMBDA solutions of each spacecraft in what is called: multivariate bootstrapped relative positioning. The developed approach will be compared in simulations with relative positioning using a single antenna at each spacecraft (standard LAMBDA) and a vectorial bootstrapping approach. In the simulations we will analyze single epoch, single frequency success rates as the most challenging application. The difference in performance for the approaches for single epoch solutions, is a good indication of the strength of the underlying models. As the multivariate bootstrapping approach has a stronger model by applying information on the geometry of the constrained baselines, for applications with large observation noise and limited number of observations this will result in a better performance compared to the vectorial bootstrapping approach. Compared with standard LAMBDA, it can reach a 59% higher success rate for ambiguity resolution. The higher success rate on the unconstrained baseline between the platforms comes without extra computational load as the constrained baseline(s) problem has to be solved for attitude determination and this information can be applied for relative positioning.  相似文献   
6.
Quality control in integrated navigation systems   总被引:7,自引:0,他引:7  
Real-time estimation of parameter sin dynamic systems, which becomes increasingly important in the field of high-precision navigation, requires real-time testing of the models underlying the navigation system. A real-time recursive testing procedure than can be used in conjunction with the Kalman filter algorithm is presented, along with diagnostic tools for inferring the detectability of particular model errors. The testing procedure consists of detection, identification, and adaptation. It can accommodate model errors in the measurement model and dynamic model of the integrated navigation system and is optimal in the uniformly-most-powerful-invariant sense  相似文献   
7.
Various studies have been performed to investigate the accuracy of troposphere zenith wet delays (ZWDs) determined from GPS. Most of these studies use dual-frequency GPS data of large-scale networks with long baselines to determine the absolute ZWDs. For small-scale networks the estimability of the absolute ZWDs deteriorates due to high correlation between the solutions of the ZWDs and satellite-specific parameters as satellite clocks. However, as relative ZWDs (rZWDs) can always be estimated, irrespective of the size of the network, it is of interest to understand how the large-scale network rZWD-performance of dual-frequency GPS using an ionosphere-float model compares to the small-scale network rZWD-performance of single-frequency GPS using an ionosphere-weighted model. In this contribution such an analysis is performed using undifferenced and uncombined network parametrization modelling. In this context we demonstrate the ionosphere weighted constraints, which allows the determination of the rZWDs independent from signals on the second frequency. Based on an analysis of both simulated and real data, it is found that under quiet ionosphere conditions, the accuracy of the single-frequency determined rZWDs in the ionosphere-weighted network is comparable to that of the large-scale dual-frequency network without ionospheric constraints. Making use of the real data from two baselines of 15?days, it was found that the absolute differences of the rZWDs applying the two strategies are within 1?cm in over 90% and 95% of the time for ambiguity-float and -fixed cases, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号