首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   4篇
航天技术   1篇
航天   1篇
  2010年   2篇
  2007年   1篇
  2004年   1篇
  1998年   1篇
  1992年   1篇
排序方式: 共有6条查询结果,搜索用时 156 毫秒
1
1.
基于线性稳定性分析的蒸发毛细弯液面的显式稳定判据   总被引:1,自引:0,他引:1  
黄晓明  Tarik Kaya 《宇航学报》2010,31(5):1487-1494
蒸发毛细弯液面稳定性对毛细抽吸换热装置的运行有着重要意义。由于弯 液面的蒸发80%是发生在一个微小的区域,即薄膜区,因此可以预期,不稳定性将最先 产生于这一区域。薄膜区的界面会受到多种作用力的影响,例如脱离压力,蒸发质量损失, 蒸气反冲以及温度梯度引起的热毛细作用,其机理相当复杂。本文对处于蒸发状态下的非等 温弯液面薄膜区进行线性稳定分析,并通过施加小扰动于界面演化方程,获得了蒸发弯液面 固有稳定性判定准则。该准则仅取决于毛细管弯液面温度、工质热物性以及毛细管几何尺寸 ,对毛细抽吸换热装置的应用有很好的实际指导意义。
  相似文献   
2.
The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the Cassini orbiter spacecraft. UVIS has two spectrographic channels that provide images and spectra covering the ranges from 56 to 118 nm and 110 to 190 nm. A third optical path with a solar blind CsI photocathode is used for high signal-to-noise-ratio stellar occultations by rings and atmospheres. A separate Hydrogen Deuterium Absorption Cell measures the relative abundance of deuterium and hydrogen from their Lyman-α emission. The UVIS science objectives include investigation of the chemistry, aerosols, clouds, and energy balance of the Titan and Saturn atmospheres; neutrals in the Saturn magnetosphere; the deuterium-to-hydrogen (D/H) ratio for Titan and Saturn; icy satellite surface properties; and the structure and evolution of Saturn’s rings.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
3.
The International Rosetta Mission is set for a rendezvous with Comet 67 P/Churyumov-Gerasimenko in 2014. On its 10 year journey to the comet, the spacecraft will also perform a fly-by of the two asteroids Stein and Lutetia in 2008 and 2010, respectively. The mission goal is to study the origin of comets, the relationship between cometary and interstellar material and its implications with regard to the origin of the Solar System. Measurements will be performed that shed light into the development of cometary activity and the processes in the surface layer of the nucleus and the inner coma. The Micro-Imaging Dust Analysis System (MIDAS) instrument is an essential element of Rosetta’s scientific payload. It will provide 3D images and statistical parameters of pristine cometary particles in the nm-μm range from Comet 67P/Churyumov-Gerasimenko. According to cometary dust models and experience gained from the Giotto and Vega missions to 1P/Halley, there appears to be an abundance of particles in this size range, which also covers the building blocks of pristine interplanetary dust particles. The dust collector of MIDAS will point at the comet and collect particles drifting outwards from the nucleus surface. MIDAS is based on an Atomic Force Microscope (AFM), a type of scanning microprobe able to image small structures in 3D. AFM images provide morphological and statistical information on the dust population, including texture, shape, size and flux. Although the AFM uses proven laboratory technology, MIDAS is its first such application in space. This paper describes the scientific objectives and background, the technical implementation and the capabilities of MIDAS as they stand after the commissioning of the flight instrument, and the implications for cometary measurements.  相似文献   
4.
The Cosmic Radiation Environment and Dosimetry experiment (CREDO) has been operational on board the Advanced Photovoltaics & Electronics Experiment Spacecraft since August 1994. Extensive measurements of cosmic ray linear energy transfer spectra (using data to January 1996) and total dose (using data to November 1994) have been made, and compared with predictions of standard models. Detailed consideration of spacecraft shielding effects have been made. Predictions are shown to overestimate the measured linear energy transfer spectra. The CREAM experiment was flown on STS-63 in the SpaceHab module. Results show penetration of high energy electrons into the SpaceHab module.  相似文献   
5.
The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113–432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg × 0.1 deg for illuminated disc observations and 1 deg × 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg × 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170–432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.  相似文献   
6.
Advanced aerothermodynamic analysis of SHEFEX I   总被引:1,自引:0,他引:1  
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号