首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   1篇
航天   3篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有4条查询结果,搜索用时 62 毫秒
1
1.
Attitude control techniques for the pointing and stabilization of very large, inherently flexible spacecraft systems are investigated. The attitude dynamics and control of a long, homogeneous flexible beam whose center of mass is assumed to follow a circular orbit is analyzed. In this study, first order effects of gravity-gradient are included, whereas external perturbations and related orbital station keeping maneuvers are neglected. A mathematical model which describes the system deflections within the orbital plane has been developed by treating the beam as having a maximum of three discretized mass particles connected by massless, elastic structural elements. The uncontrolled dynamics of this system are simulated and, in addition, the effects of the control devices are considered. The concept of distributed modal control, which provides a means for controlling a system mode independently of all other modes, is examined. The effect of varying the number of modes in the model as well as the number and location of the control devices are also considered.  相似文献   
2.
The equations of motion of a momentum biased spacecraft are derived in a general form. The spacecraft is assumed to be orbiting in a near-elliptical orbit. An aerodynamic torque model which accounts for the atmospheric superrotation is assumed. The equilibrium attitude angles are obtained in terms of modified Bessel functions. Analytic expressions for the long-term motion of the momentum biased axis are derived for special cases. The analysis is applicable to the Magsat mission.  相似文献   
3.
The time-optimal control of a spin-stabilized spacecraft with a movable telescoping appendage (boom), is considered analytically and numerically. The motion of a control mass at the end of the boom is determined such that the terminal time will be minimized for two-axis control of a symmetric spacecraft. The equations of rotational motion are linearized about the desired state of spin about the symmetry axis. The equations for the transverse angular velocity components have the form of a coupled two dimensional harmonic oscillator with boom motion as a control force. The control function which brings the system to the desired state is known to be a series of positive and negative pulses. If the initial state is such that the system can be driven to rest in a single switch, the responses, switching and final times, and required boom motion may be determined analytically. Some typical numerical results based on these solutions are discussed.  相似文献   
4.
The dynamics of detumbling a randomly spinning spacecraft using externally mounted, movable telescoping appendages are studied both analytically and numerically. Two types of telescoping appendages are considered: (a) where an end mass is mounted at the end of an (assumed) massless boom; and (b) where the appendage is assumed to consist of a uniformly distributed homogeneous mass throughout its length. From an application of Lyapunov's second method, boom extension maneuvers can be determined to approach either of two desired final states: close to a zero inertial angular velocity state and a final spin rate about only one of the principal axes. Recovery dynamics are evaluated analytically for the case of symmetrical deployment. Numerical examination of other asymmetrical cases verifies the practicality of using movable appendages to recover a randomly tumbling spacecraft.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号