首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   4篇
航天技术   1篇
  1999年   2篇
  1997年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
For a rotational MHD discontinuity the bulk flow is Alfvénic in the de Hoffmann-Teller frame. Using AMPTE/IRM data, we present ion distribution functions during three crossings of the dayside low-latitude magnetopause. For these crossings a well defined de Hoffmann-Teller frame can be found, but the field-aligned bulk flow is always slower than the Alfvén speed. Nevertheless, we find signatures in the distribution functions that provide clear evidence for magnetic reconnection: solar wind ions reflected off the magnetopause, “D-shaped” solar wind ion distributions in the boundary layer, and counterstreaming of solar wind ions and ionospheric ions in the boundary layer.  相似文献   
2.
Sibeck  D.G.  Paschmann  G.  Treumann  R.A.  Fuselier  S.A.  Lennartsson  W.  Lockwood  M.  Lundin  R.  Ogilvie  K.W.  Onsager  T.G.  Phan  T.-D.  Roth  M.  Scholer  M.  Sckopke  N.  Stasiewicz  K.  Yamauchi  M. 《Space Science Reviews》1999,88(1-2):207-283
Space Science Reviews -  相似文献   
3.
The early ISEE orbits provided the opportunity to study the magnetopause and its environs only a few Earth radii above the subsolar point. Measurements of complete two-dimensional ion and electron distributions every 3 or 12 s, and of three-dimensional distributions every 12 or 48 s by the LASL/MPI instrumentation on both spacecraft allow a detailed study of the plasma properties with unprecedented temporal resolution. This paper presents observations obtained during four successive inbound orbits in November 1977, containing a total of 9 magnetopause crossings, which occurred under widely differing orientations of the external magnetic field. The main findings are: (1) The magnetosheath flow near the magnetopause is characterized by large fluctuations, which often appear to be temporal in nature. (2) Between 0.1 and 0.3R E outside the magnetopause, the plasma density and pressure often start to gradually decrease as the magnetopause is approached, in conjunction with an increase in magnetic field strength. These observations are in accordance with the formation of a depletion layer due to the compression of magnetic flux tubes. (3) In cases where the magnetopause can be well resolved, it exhibits fluctuations in density, and especially pressure and bulk velocity around average magnetosheath values. The pressure fluctuations are anticorrelated with simultaneous magnetic field pressure changes. (4) In ope case the magnetopause is characterized by substantially displaced electron and proton boundaries and a proton flow direction change from upwards along the magnetopause to a direction tranverse to the geomagnetic field. These features are in agreement with a model of the magnetopause described by Parker. (5) The character of the magnetopause sometimes varies strongly between ISEE-1 and -2 crossings which occur 1 min apart. At times this is clearly the result of highly non-uniform motions. There are also cases where there is very good agreement between the structures observed by the two satellites. (6) In three of the nine crossings no boundary layer was present adjacent to the magnetopause. More remarkably, two of the three occurred while the external magnetic field had a substantial southward component, in clear contradiction to expectations from current reconnection models. (7) The only thick (low-latitude) boundary layer (LLBL) observed was characterized by sharp changes at its inner and outer edges. This profile is difficult to reconcile with local plasma entry by either direct influx or diffusion. (8) During the crossings which showed no boundary layer adjacent to the magnetopause, magnetosheath-like plasma was encountered sometime later. Possible explanations include the sudden formation of a boundary layer at this location right at the time of the encounter, and a crossing of an inclusion of magnetosheath plasma within the magnetosphere. (9) The flow in the LLBL is highly variable, observed directions include flow towards and away from the subsolar point, along the geomagnetic field and across it, tangential and normal to the magnetopause. Some of these features clearly are nonstationary. The scale size over which the flow directions change exceeds the separation distance (several hundred km) of the two spacecraft.  相似文献   
4.
Treumann  R.A.  Sckopke  N. 《Space Science Reviews》1999,88(1-2):389-402
Space Science Reviews -  相似文献   
5.
High temporal resolution measurements of solar wind electrons at the Earth's bow shock on the dawn side have been made with the LASL/MPI fast plasma experiments on ISEE-1 and 2. One dimensional, 1-d, temperatures, T e , and densities, N e , are obtained every 0.3 s and 2-d values are obtained every 3 s. Profiles of T e and N e at the shock usually are found to be similar to one another and also to the profile of the magnetic field magnitude. The time scale of electron thermalization varies from about 0.5 s to greater than 1 min, depending importantly on the shock motion and the orientation of the magnetic field. Typical thermalization times from 05:00–12:00 LT are 10 s, considerably shorter than proton thermalization times at the shock. This time scale corresponds to a distance of 100 km, comparable to but somewhat larger than the typical ion inertial length. The electron thermalization times are significantly longer than some of the values frequently cited in the past. At the end of the electron thermalization there typically is an overshoot in electron thermal pressure followed by an undershoot which give the pressure profile of the shock the appearance of a damped wave. Ion thermalization is essentially completed by the time the electron pressure wave is damped. The most probable value of the electron temperature ratio across the shock is 1.7, and this value is relatively independent of the Sun-Earth-satellite angle, ss , for ss between 25° and 100°.The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the Department of Energy.By acceptance of this article, the publisher recognizes that the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号