首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   3篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Space Science Reviews - Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated electrons often exhibit a power law,...  相似文献   
2.
In large-scale systems of interest to solar physics, there is growing evidence that magnetic reconnection involves the formation of extended current sheets which are unstable to plasmoids (secondary magnetic islands). Recent results suggest that plasmoids may play a critical role in the evolution of reconnection, and have raised fundamental questions regarding the applicability of resistive MHD to various regimes. In collisional plasmas, where the thickness of all resistive layers remain larger than the ion gyroradius, simulations results indicate that plasmoids permit reconnection to proceed much faster than the slow Sweet-Parker scaling. However, it appears these rates are still a factor of ~10× slower than observed in kinetic regimes, where the diffusion region current sheet falls below the ion gyroradius and additional physics beyond MHD becomes crucially important. Over a broad range of interesting parameters, the formation of plasmoids may naturally induce a transition into these kinetic regimes. New insights into this scenario have emerged in recent years based on a combination of linear theory, fluid simulations and fully kinetic simulations which retain a Fokker-Planck collision operator to allow a rigorous treatment of Coulomb collisions as the reconnection electric field exceeds the runaway limit. Here, we present some new results from this approach for guide field reconnection. Based upon these results, a parameter space map is constructed that summarizes the present understanding of how reconnection proceeds in various regimes.  相似文献   
3.
The concept of reconnection is found in many fields of physics with the closest analogue to magnetic reconnection being the reconnection of vortex tubes in hydrodynamics. In plasmas, magnetic reconnection plays an important role in release of energy associated with the magnetic shear into particle energy. Although most studies to date have focused on 2D reconnection, the availability of 3D petascale kinetic simulations have brought the complexity of 3D reconnection to the forefront in collisionless reconnection studies. Here we briefly review the latest advances in 2D and compare and contrast the results with recent 3D studies that address role of anomalous transport in reconnection, effects of turbulence on the rate and structure, among others. Another outcome of recent research is the realization of a deeper link between turbulence and reconnection where the common denominator is the generic formation of electron scale sheets which dissipate the energy through reconnection. Finally, we close the review by listing some of the major outstanding problems in reconnection physics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号