首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
航空   1篇
航天   2篇
  2014年   1篇
  2013年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The paper presents the second part of the results of search studies for the development of a combined system of high-precision stabilization of the optical telescope for the designed Spectr-UF international observatory [1]. A new modification of the strict method of the synthesis of nonlinear discrete-continuous stabilization systems with uncertainties is described, which is based on the minimization of the guaranteed accuracy estimate calculated using vector Lyapunov functions. Using this method, the synthesis of the feedback parameters in the mode of precise inertial stabilization of the optical telescope axis is performed taking the design nonrigidity, quantization of signals over time and level, and errors of orientation meters, as well as the errors and limitation of control moments of executive engine-flywheels into account. The results of numerical experiments that demonstrate the quality of the synthesized system are presented.  相似文献   
2.
The paper presents the first part of results of basic research for development of a combined system of high-precision stabilization of the optical telescope for the international observatory Speckr UF (currently under design) planned to study emission of stars in the UV waveband. A new direct method used in these studies for calculating program controls is described. The results of numerical experiments are presented.  相似文献   
3.
The aim of the present paper is to study the numerical solutions of the steady MHD two dimensional stagnation point flow of an incompressible nano fluid towards a stretching cylinder.The effects of radiation and convective boundary condition are also taken into account.The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis.The resulting nonlinear momentum,energy and nano particle equations are simplifed using similarity transformations.Numerical solutions have been obtained for the velocity,temperature and nanoparticle fraction profles.The influence of physical parameters on the velocity,temperature,nanoparticle fraction,rates of heat transfer and nanoparticle fraction are shown graphically.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号