首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   4篇
  1987年   2篇
  1985年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Priedhorsky  W. 《Space Science Reviews》1985,40(1-2):305-311
We present long-term (1969–1979) observations of Cygnus X-3, obtained by the Vela 5B satellite. The 3–12 keV light curve has 10 day time resolution. Cyg X-3 is a peculiar high-luminosity X-ray source, radiating from the radio region to hard gamma rays of more than 1016 eV. It has a 4.8 hour period, probably orbital, which is not resolved by our present analysis. Long term periodicities of 17, 20, and 33–34 days have been reported by several authors, and explained as the effects of apsidal motion, precession, or an eccentric orbit. We do not observe the 17 and 33–34 day variations, and set upper limits significantly lower than the reported amplitude of the 33–34 day variation. There is weak evidence for a 20 day flux variation. The light curve shows high and low states which alternate with a characteristic timescale of 1 year. There is no counterpart, at this time resolution, of the giant radio outburst of 1972 September.  相似文献   
2.
Most of what we know about galactic X-ray binaries comes from their time variation, particularly periodic variations corresponding to neutron star rotation, and binary motion. Longer cycles or quasi-cycles are much harder to observe because of the shortage of instrumentation suitable for long-term monitoring. Nonetheless, cycle with periods up to a few years have been seen in several galactic binaries.Cycles of 30–300 days have been confirmed for four high-mass systems, LMC X-4, Her X-1, SS433, and Cyg X-1, and are suspected in several others. These cycles are observed in both the X-ray and optical bands, and represent cyclic variations in both the inner and outer parts of the accretion disk. Some component of these systems is precessing, but we are not certain which. It could be a misaligned companion star; the outer rim of the accretion disk, driven by radiative feedback; or the neutron star.Several low-mass X-ray binaries have quasi-periodic cycles, with periods ranging from 1/2 to 2 years. The amplitude of modulation ranges between 50 and 100%, i.e., both persistent and transient objects fall into this class. This activity is reminiscent of the superoutburst cycles of the SU UMa cataclysmic variables, and may be caused by similar mass-transfer instabilities.Periodic outbursts in the Be/neutron star systems seem to result from variable mass transfer in a wide, eccentric orbit. The relationship between the orbital cycle and the flux outbursts, however, is not well understood, and even the equivalence of the outburst and binary cycles remains hypothetical for most objects. Most likely, the periodic outbursts result from enhanced mass transfer at periastron.Compared to other aspects of X-ray astronomy, long-term activity has been much less intensively studied by both observers and theoreticians. A simple all-sky monitor in permanent operation could provide for the X-ray sky the same kind of data base provided to optical observers by the Harvard plates.  相似文献   
3.
We discuss the rationale for a semi-permanent all-sky X-ray monitor, and investigate a variety of options for its implementation. We conclude that the Space Station offers an excellent opportunity for hosting such a monitor, and that a set of pinhole cameras can be configured to provide an effective and economical monitor system. A baseline of six independent pinhole modules, each of which requires approximately one cubic foot, 30 pounds, 2 watts, and 100 bits per second, can provide full sky coverage with scientifically interesting sensitivities. No other resources or special accommodation (such as detailed alignment registration, time-tagging or on-orbit servicing) would be required. The baseline system can locate bright sources to a few arc min, and can simultaneously measure each of the several hundred sources in the sky brighter than a few thousandths the intensity of the Crab nebula every day for decades.  相似文献   
4.
Four EINSTEIN HRI images of Cygnus X-1 were examined for the presence of a halo due to scattering of X-rays by interstellar grains. The analysis technique exploits the intrinsic aperiodic variability of the source to map the point response function of the optics. A residual, non-variable, component to the surface brightness distribution (comprising 12% of the source flux) is interpreted as a scattered halo. The halo flux does not reflect the short term time variability of the central source as it is smoothed by differential time delays of order days. The Cygnus X-1 halo is consistent with those of other sources derived in previous studies using different techniques. Comparison is made with a scattering model, and the sensitivity of the halo flux to maximal grain size is demonstrated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号