首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
航空   14篇
  2003年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1995年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有14条查询结果,搜索用时 187 毫秒
1.
2.
Ballistic missile track initiation from satellite observations   总被引:3,自引:0,他引:3  
An algorithm is presented to initiate tracks of a ballistic missile in the initial exoatmospheric phase, using line of sight (LOS) measurements from one or more moving platforms (typically satellites). The major feature of this problem is the poor target motion observability which results in a very ill-conditioned estimation problem. The Gauss-Newton iterative least squares minimization algorithm for estimating the state of a nonlinear deterministic system with nonlinear noisy measurements has been previously applied to the problem of angles-only orbit determination using more than three observations. A major shortcoming of this approach is that convergence of the algorithm depends strongly on the initial guess. By using the more sophisticated Levenberg-Marquardt method in place of the simpler Gauss-Newton algorithm and by developing robust new methods for obtaining the initial guess in both single and multiple satellite scenarios, the above mentioned difficulties have been overcome. In addition, an expression for the Cramer-Rao lower bound (CRLB) on the error covariance matrix of the estimate is derived. We also incorporate additional partial information as an extra pseudomeasurement and determine a modified maximum likelihood (ML) estimate of the target state and the associated bound on the covariance matrix. In most practical situations, probabilistic models of the target altitude and/or speed at the initial point constitute the most useful additional information. Monte Carlo simulation studies on some typical scenarios were performed, and the results indicate that the estimation errors are commensurate with the theoretical lower bounds, thus illustrating that the proposed estimators are efficient  相似文献   
3.
Efficient algorithms exist for the square-root probabilistic data association filter (PDAF). The same approach is extended to develop square-root versions of the interacting multiple model (IMM) Kalman filter and the IMMPDAF algorithms. The computational efficiency of the method stems from the fact that the terms needed in the overall covariance updates of PDAF, IMM, and IMMPDAF can be obtained as part of the square-root covariance update of an ordinary Kalman filter. In addition, a new square-root covariance prediction algorithm that is substantially faster than the usual modified weighted Gram-Schmidt (MWG-S) algorithm, whenever the process noise covariance matrix is time invariant, is proposed  相似文献   
4.
The extraction of measurements for precision tracking of the centroid of a target from a forward-looking infrared imaging sensor is presented. The size of the image of the target is assumed to be small, i.e. around 10 pixels. The statistical characterization of the centroid of the target is obtained. Similarly, the statistical properties of the image correlation of two frames, which measures the target offset, are derived. Explicit expressions that map the video noise statistics into measurement noise statistics are obtained. The offset measurement noise is shown to be autocorrelated. State variable models for tracking the target centroid with these measurements are then presented. Simulation results and quantitative conclusions about achievable subpixel tracking accuracy are given. It is shown that the filter that models the autocorrelated measurement noise provides the best performance  相似文献   
5.
The problem of mapping the tasks of a multitarget tracking algorithm onto parallel computing architectures to maximize speedup is considered. An asymptotically optimal mapping algorithm is developed and applied to study the effects of task granularity and processor architectures on the speedup. From the simulation results, it is concluded that task granularity and the parallelization of clustering and global hypotheses formation stages of the tracking algorithm are major determinants of speedup  相似文献   
6.
In this paper we present the design of a Variable Structure Interacting Multiple Model (VS-IMM) estimator for tracking groups of ground targets on constrained paths using Moving Target Indicator (MTI) reports obtained from an airborne sensor. The targets are moving along a highway, with varying obscuration due to changing terrain conditions. In addition, the roads can branch, merge or cross-the scenario represents target convoys along a realistic road network with junctions, changing terrains, etc. Some of the targets may also move in an open field. This constrained motion estimation problem is handled using an IMM estimator with varying mode sets depending on the topography, The number of models in the IMM estimator, their types and their parameters are modified adaptively, in real-time, based on the estimated position of the target and the corresponding road/visibility conditions. This topography-based variable structure mechanism eliminates the need for carrying all the possible models throughout the entire tracking period as in the standard IMM estimator, significantly improving performance and reducing computational load. Data association is handled using an assignment algorithm. The estimator is designed to handle a very large number of ground targets simultaneously. A simulated scenario consisting of over one hundred targets is used to illustrate the selection of design parameters and the operation of the tracker. Performance measures are presented to contrast the benefits of the VS-IMM estimator over the Kalman filter and the standard IMM estimator, The VS-IMM estimator is then combined with multidimensional assignment to gain “time-depth.” The additional benefit of using higher dimensional assignment algorithms for data association is also evaluated  相似文献   
7.
We present a fast data association technique based on clustering and multidimensional assignment algorithms for multisensor-multitarget tracking Assignment-based methods have been shown to be very effective for data association. Multidimensional assignment for data association is an NP-hard problem and various near-optimal modifications with (pseudo-)polynomial complexity have been proposed. In multidimensional assignment, candidate assignment tree building consumes about 95% of the time. We present the development of a fast data association algorithm, which partitions the problem into smaller sub-problems. A clustering approach, which attempts to group measurements before forming the candidate tree, is developed for various target-sensor configurations. Simulation results show significant computational savings over the standard multidimensional assignment approach without clustering  相似文献   
8.
We present the development of a multisensor fusion algorithm using multidimensional data association for multitarget tracking. The work is motivated by a large scale surveillance problem, where observations from multiple asynchronous sensors with time-varying sampling intervals (electronically scanned array (ESA) radars) are used for centralized fusion. The combination of multisensor fusion with multidimensional assignment is done so as to maximize the “time-depth” in addition to “sensor-width” for the number S of lists handled by the assignment algorithm. The standard procedure, which associates measurements from the most recently arrived S-1 frames to established tracks, can have, in the case of S sensors, a time-depth of zero. A new technique, which guarantees maximum effectiveness for an S-dimensional data association (S⩾3), i.e., maximum time-depth (S-1) for each sensor without sacrificing the fusion across sensors, is presented. Using a sliding window technique (of length S), the estimates are updated after each frame of measurements. The algorithm provides a systematic approach to automatic track formation, maintenance, and termination for multitarget tracking using multisensor fusion with multidimensional assignment for data association. Estimation results are presented for simulated data for a large scale air-to-ground target tracking problem  相似文献   
9.
We consider the problem of optimal allocation of measurement resources, when: (1) the total measurement budget and time duration of measurements are fixed, and (2) the cost of an individual measurement varies inversely with the (controllable) measurement accuracy. The objective is to determine the time-distribution of measurement variances that minimizes a measure of error in estimating a discrete-time, vector stochastic process with known auto-correlation matrix using a linear estimator. The metric of estimation error is the trace of weighted sum of estimation error covariance matrices at various time indices. We show that this problem reduces to a nonlinear optimization problem with linear equality and inequality constraints. The solution to this problem is obtained via a variation of the projected Newton method. For the special case when the vector stochastic process is the state of a linear, finite-dimensional stochastic system, the problem reduces to the solution of a nonlinear optimal control problem. In this case, the gradient and Hessian with respect to the measurement costs are obtained via the solution of a two-point boundary value problem and the resulting optimization problem is solved via a variation of the projected Newton method. The proposed method is illustrated using four examples  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号