首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
航空   10篇
  2007年   1篇
  2006年   3篇
  1999年   3篇
  1995年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Differential-game-based guidance law using target orientation observations   总被引:4,自引:0,他引:4  
Modern 4th generation air-to-air missiles are quite capable of dealing with today's battlefield needs. Advanced aerodynamics, highly efficient warheads and smart target acquisition systems combine to yield higher missile lethality than ever. However, in order to intercept highly maneuverable targets, such as future unmanned combat air vehicles (UCAV), or to achieve higher tracking precision for missiles equipped with smaller warheads, further improvement in the missile guidance system is still needed. A new concept is presented here for deriving improved differential-game-based guidance laws that make use of information about the target orientation, which is acquired via an imaging seeker. The underlying idea is that of using measurements of the target attitude as a leading indicator of target acceleration. Knowledge of target attitude reduces the reachable set of target acceleration, facilitating the computation of an improved estimate of the zero-effort miss (ZEM) distance. In consequence, missile guidance accuracy is significantly improved. The new concept is applied in a horizontal interception scenario, where it is assumed that the target maneuver direction, constituting a partial attitude information, can be extracted via processing target images, acquired by an imaging sensor. The derivation results in a new guidance law that explicitly exploits the direction of the target acceleration. The performance of the new guidance law is studied via a computer simulation, which demonstrates its superiority over existing state-of-the-art differential-game-based guidance laws. It is demonstrated that a significant decrease in the miss distance can be expected via the use of partial target orientation information.  相似文献   
2.
The problem of bearings-only target localization is to estimate the location of a fixed target from a sequence of noisy bearing measurements. Although, in theory, this process is observable even without an observer maneuver, estimation performance (i.e., accuracy, stability and convergence rate) can be greatly enhanced by properly exploiting observer motion to increase observability. This work addresses the optimization of observer trajectories for bearings-only fixed-target localization. The approach presented herein is based on maximizing the determinant of the Fisher information matrix (FIM), subject to state constraints imposed on the observer trajectory (e.g., by the target defense system). Direct optimal control numerical schemes, including the recently introduced differential inclusion (DI) method, are used to solve the resulting optimal control problem. Computer simulations, utilizing the familiar Stansfield and maximum likelihood (ML) estimators, demonstrate the enhancement to target position estimability using the optimal observer trajectories  相似文献   
3.
The fundamental TPBVP usually underlying true “optimal sensor selection strategy” is revisited to obtain practical real-time mechanizations as a solution to an exclusively initial value problem  相似文献   
4.
Efficient fault tolerant estimation using the IMM methodology   总被引:2,自引:0,他引:2  
Space systems are characterized by a low-intensity process noise resulting from uncertain forces and moments. In many cases, their scalar measurement channels can be assumed to be independent, with one-dimensional internal dynamics. The nominal operation of these systems can be severely damaged by faults in the sensors. A natural method that can be used to yield fault tolerant estimates of such systems is the interacting multiple model (IMM) filtering algorithm, which is known to provide very accurate results. However, having been derived for a general class of systems with switching parameters, the IMM filter does not utilize the independence of the measurement errors in different channels, nor does it exploit the fact that the process noise is of low intensity. Thus, the implementation of the IMM in this case is computationally expensive. A new estimation technique is proposed herein, that explicitly utilizes the aforementioned properties. In the resulting estimation scheme separate measurement channels are handled separately, thus reducing the computational complexity. It is shown that, whereas the IMM complexity is exponential in the number of fault-prone measurements, the complexity of the proposed technique is polynomial. A simulation study involving spacecraft attitude estimation is carried out. This study shows that the proposed technique closely approximates the full-blown IMM algorithm, while requiring only a modest fraction of the computational cost.  相似文献   
5.
Novel quaternion Kalman filter   总被引:4,自引:0,他引:4  
This paper presents a novel Kalman filter (KF) for estimating the attitude-quaternion as well as gyro random drifts from vector measurements. Employing a special manipulation on the measurement equation results in a linear pseudo-measurement equation whose error is state-dependent. Because the quaternion kinematics equation is linear, the combination of the two yields a linear KF that eliminates the usual linearization procedure and is less sensitive to initial estimation errors. General accurate expressions for the covariance matrices of the system state-dependent noises are developed. In addition, an analysis shows how to compute these covariance matrices efficiently. An adaptive version of the filter is also developed to handle modeling errors of the dynamic system noise statistics. Monte-Carlo simulations are carried out that demonstrate the efficiency of both versions of the filter. In the particular case of high initial estimation errors, a typical extended Kalman filter (EKF) fails to converge whereas the proposed filter succeeds.  相似文献   
6.
A novel sensor selection strategy is introduced, which can be implemented on-line in time-varying discrete-time system. We consider a case in which several measurement subsystem are available, each of which may be used to drive a state estimation algorithm. However, due to practical implementation constraints (such as the ability of the on-board computer to process the acquired data), only one of these subsystems can actually by utilized at a measurement update. An algorithm is needed, by which the optimal measurement subsystem to be used is selected at each sensor selection epoch. The approach described is based on using the square root V-Lambda information filter as the underlying state estimation algorithm. This algorithm continuously provides its user with the spectral factors of the estimation error covariance matrix, which are used in this work as the basis for an on-line decision procedure by which the optimal measurement strategy is derived. At each sensor selection epoch, a measurement subsystem is selected, which contributes the largest amount of information along the principal state space direction associated with the largest current estimation error. A numerical example is presented, which demonstrates the performance of the new algorithm. The state estimation problem is solved for a third-order time-varying system equipped with three measurement subsystem, only one of which can be used at a measurement update. It is shown that the optimal measurement strategy algorithm enhances the estimator by substantially reducing the maximal estimation error  相似文献   
7.
A novel method is introduced for autonomous attitude estimation of a mini unmanned aerial vehicle (UAV) carrying an inertially stabilized payload. The method is based on utilizing the outputs of rate gyros normally used to inertially stabilize the payload, and other data that is normally available from conventional aircraft-mounted sensors. A decentralized estimation algorithm is developed, which uses the aircraft/payload mathematical models to bound the estimation errors. Exploiting modern multiprocessor computer technology, the new estimation algorithm comprises two parallel extended Kalman filters (EKFs) and a data fusion algorithm. Real-time experimental tests, incorporating a payload model with real rate gyros mounted on a three-axis flight table, have validated the feasibility of the concept. The theoretical and experimental investigation demonstrates that the estimation algorithm is capable of estimating the attitude angles with an estimation error not exceeding 1 deg, at output rates of 13 Hz, thus constituting a viable substitute for the conventional vertical gyroscope  相似文献   
8.
Kalman filtering for matrix estimation   总被引:1,自引:0,他引:1  
A general discrete-time Kalman filter (KF) for state matrix estimation using matrix measurements is presented. The new algorithm evaluates the state matrix estimate and the estimation error covariance matrix in terms of the original system matrices. The proposed algorithm naturally fits systems which are most conveniently described by matrix process and measurement equations. Its formulation uses a compact notation for aiding both intuition and mathematical manipulation. It is a straightforward extension of the classical KF, and includes as special cases other matrix filters that were developed in the past. Beyond the analytical value of the matrix filter, it is shown through various examples arising in engineering problems that this filter can be computationally more efficient than its vectorized version.  相似文献   
9.
A sequential filtering algorithm is presented for spacecraft attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the state of the filter, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the robustness and accuracy of the method. Numerical examples are used to demonstrate the performance of the method  相似文献   
10.
Attitude Determination from Vector Observations: Quaternion Estimation   总被引:3,自引:0,他引:3  
Two recursive estimation algorithms, which use pairs of measured vectors to yield minimum variance estimates of the quaternion of rotation, are presented. The nonlinear relations between the direction cosine matrix and the quaternion are linearized, and a variant of the extended Kalman filter is used to estimate the difference between the quaternion and its estimate. With each measurement this estimate is updated and added to the whole quaternion estimate. This operation constitutes a full state reset in the estimation process. Filter tuning is needed to obtain a converging filter. The second algorithm presented uses the normality property of the quaternion of rotation to obtain, in a straightforward design, a filter which converges, with a smaller error, to a normal quaternion. This algorithm changes the state but not the covariance computation of the original algorithm and implies only a partial reset. Results of Monte-Carlo simulation runs are presented which demonstrate the superiority of the normalized quaternion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号