首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   4篇
  2011年   2篇
  2008年   1篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 78 毫秒
1
1.
The concept of Galactic Habitable Zone (GHZ) was introduced a few years ago as an extension of the much older concept of Circumstellar Habitable Zone. However, the physical processes underlying the former concept are hard to identify and even harder to quantify. That difficulty does not allow us, at present, to draw any significant conclusions about the extent of the GHZ: it may well be that the entire Milky Way disk is suitable for complex life.  相似文献   
2.
The engineering goal of the Deep Impact mission is to impact comet Tempel 1 on July 4, 2005, with a 370 kg active Impactor spacecraft (s/c). The impact velocity will be just over 10 km/s and is expected to excavate a crater approximately 20 m deep and 100 m wide. The Impactor s/c will be delivered to the vicinity of Tempel 1 by the Flyby s/c, which is also the key observing platform for the event. Following Impactor release, the Flyby will change course to pass the nucleus at an altitude of 500 km and at the same time slow down in order to allow approximately 800 s of observation of the impact event, ejecta plume expansion, and crater formation. Deep Impact will use the autonomous optical navigation (AutoNav) software system to guide the Impactor s/c to intercept the nucleus of Tempel 1 at a location that is illuminated and viewable from the Flyby. The Flyby s/c uses identical software to determine its comet-relative trajectory and provide the attitude determination and control system (ADCS) with the relative position information necessary to point the High Resolution Imager (HRI) and Medium Resolution Imager (MRI) instruments at the impact site during the encounter. This paper describes the Impactor s/c autonomous targeting design and the Flyby s/c autonomous tracking design, including image processing and navigation (trajectory estimation and maneuver computation). We also discuss the analysis that led to the current design, the expected system performance as compared to the key mission requirements and the sensitivity to various s/c subsystems and Tempel 1 environmental factors.  相似文献   
3.
The Dawn Gravity Investigation at Vesta and Ceres   总被引:2,自引:0,他引:2  
The objective of the Dawn gravity investigation is to use high precision X-band Doppler tracking and landmark tracking from optical images to measure the gravity fields of Vesta and Ceres to a half-wavelength surface resolution better than 90-km and 300-km, respectively. Depending on the Doppler tracking assumptions, the gravity field will be determined to somewhere between harmonic degrees 15 and 25 for Vesta and about degree 10 for Ceres. The gravity fields together with shape models determined from Dawn??s framing camera constrain models of the interior from the core to the crust. The gravity field is determined jointly with the spin pole location. The second degree harmonics together with assumptions on obliquity or hydrostatic equilibrium may determine the moments of inertia.  相似文献   
4.
The objective of the Dawn topography investigation is to derive the detailed shapes of 4 Vesta and 1 Ceres in order to create orthorectified image mosaics for geologic interpretation, as well as to study the asteroids?? landforms, interior structure, and the processes that have modified their surfaces over geologic time. In this paper we describe our approaches for producing shape models, plans for acquiring the needed image data for Vesta, and the results of a numerical simulation of the Vesta mapping campaign that quantify the expected accuracy of our results. Multi-angle images obtained by Dawn??s framing camera will be used to create topographic models with 100 m/pixel horizontal resolution and 10 m height accuracy at Vesta, and 200 m/pixel horizontal resolution and 20 m height accuracy at Ceres. Two different techniques, stereophotogrammetry and stereophotoclinometry, are employed to model the shape; these models will be merged with the asteroidal gravity fields obtained by Dawn to produce geodetically controlled topographic models for each body. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic and impact history of Vesta, and enable co-registration of data sets to determine Vesta??s geologic history. At Ceres, the topography will likely reveal much about processes of surface modification as well as the internal structure and evolution of this dwarf planet.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号