首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
航空   9篇
航天技术   3篇
航天   1篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2014年   3篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  1996年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
2.
Our understanding of the upper atmosphere of unmagnetized bodies such as Mars, Venus and Titan has improved significantly in this decade. Recent observations by in situ and remote sensing instruments on board Mars Express, Venus Express and Cassini have revealed characteristics of the neutral upper atmospheres (exospheres) and of energetic neutral atoms (ENAs). The ENA environment in the vicinity of the bodies is by itself a significant study field, but ENAs are also used as a diagnostic tool for the exosphere and the interaction with the upstream plasmas. Synergy between theoretical and modeling work has also improved considerably. In this review, we summarize the recent progress of our understanding of the neutral environment in the vicinity of unmagnetized planets.  相似文献   
3.
The Juno Radiation Monitoring (RM) Investigation   总被引:1,自引:0,他引:1  
The Radiation Monitoring Investigation of the Juno Mission will actively retrieve and analyze the noise signatures from penetrating radiation in the images of Juno’s star cameras and science instruments at Jupiter. The investigation’s objective is to profile Jupiter’s \(>10\mbox{-MeV}\) electron environment in regions of the Jovian magnetosphere which today are still largely unexplored. This paper discusses the primary instruments on Juno which contribute to the investigation’s data suite, the measurements of camera noise from penetrating particles, spectral sensitivities and measurement ranges of the instruments, calibrations performed prior to Juno’s first science orbit, and how the measurements may be used to infer the external relativistic electron environment.  相似文献   
4.
Planetary surface exploration is an appealing application of wireless sensor networks that has been investigated in recent years by the space community, including the European Space Agency. The idea is to deploy a number of self-organizing sensor nodes forming a wireless networked architecture to provide a distributed instrument for the study and exploration of a planetary body. To explore this concept, ESA has funded the research project RF Wireless for Planetary Exploration (RF-WIPE), carried out by GMV, SUPSI and UPM. The purpose of RF-WIPE was to simulate and prototype a wireless sensor network in order to assess the potential and limitations of the technology for the purposes of planetary exploration.  相似文献   
5.
The general scientific objective of the ASPERA-3 experiment is to study the solar wind – atmosphere interaction and to characterize the plasma and neutral gas environment with within the space near Mars through the use of energetic neutral atom (ENA) imaging and measuring local ion and electron plasma. The ASPERA-3 instrument comprises four sensors: two ENA sensors, one electron spectrometer, and one ion spectrometer. The Neutral Particle Imager (NPI) provides measurements of the integral ENA flux (0.1–60 keV) with no mass and energy resolution, but high angular resolution. The measurement principle is based on registering products (secondary ions, sputtered neutrals, reflected neutrals) of the ENA interaction with a graphite-coated surface. The Neutral Particle Detector (NPD) provides measurements of the ENA flux, resolving velocity (the hydrogen energy range is 0.1–10 keV) and mass (H and O) with a coarse angular resolution. The measurement principle is based on the surface reflection technique. The Electron Spectrometer (ELS) is a standard top-hat electrostatic analyzer in a very compact design which covers the energy range 0.01–20 keV. These three sensors are located on a scanning platform which provides scanning through 180 of rotation. The instrument also contains an ion mass analyzer (IMA). Mechanically IMA is a separate unit connected by a cable to the ASPERA-3 main unit. IMA provides ion measurements in the energy range 0.01–36 keV/charge for the main ion components H+, He++, He+, O+, and the group of molecular ions 20–80 amu/q. ASPERA-3 also includes its own DC/DC converters and digital processing unit (DPU).  相似文献   
6.
It has been speculated that the composition of the exosphere is related to the composition of Mercury’s crustal materials. If this relationship is true, then inferences regarding the bulk chemistry of the planet might be made from a thorough exospheric study. The most vexing of all unsolved problems is the uncertainty in the source of each component. Historically, it has been believed that H and He come primarily from the solar wind (Goldstein, B.E., et al. in J. Geophys. Res. 86:5485–5499, 1981), Na and K come from volatilized materials partitioned between Mercury’s crust and meteoritic impactors (Hunten, D.M., et al. in Mercury, pp. 562–612, 1988; Morgan, T.H., et al. in Icarus 74:156–170, 1988; Killen, R.M., et al. in Icarus 171:1–19, 2004b). The processes that eject atoms and molecules into the exosphere of Mercury are generally considered to be thermal vaporization, photon-stimulated desorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its own temporal and spatial dependence. The exosphere is strongly influenced by Mercury’s highly elliptical orbit and rapid orbital speed. As a consequence the surface undergoes large fluctuations in temperature and experiences differences of insolation with longitude. Because there is no inclination of the orbital axis, there are regions at extreme northern and southern latitudes that are never exposed to direct sunlight. These cold regions may serve as traps for exospheric constituents or for material that is brought in by exogenic sources such as comets, interplanetary dust, or solar wind, etc. The source rates are dependent not only on temperature and composition of the surface, but also on such factors as porosity, mineralogy, and space weathering. They are not independent of each other. For instance, ion impact may create crystal defects which enhance diffusion of atoms through the grain, and in turn enhance the efficiency of PSD. The impact flux and the size distribution of impactors affects regolith turnover rates (gardening) and the depth dependence of vaporization rates. Gardening serves both as a sink for material and as a source for fresh material. This is extremely important in bounding the rates of the other processes. Space weathering effects, such as the creation of needle-like structures in the regolith, will limit the ejection of atoms by such processes as PSD and ion-sputtering. Therefore, the use of laboratory rates in estimates of exospheric source rates can be helpful but also are often inaccurate if not modified appropriately. Porosity effects may reduce yields by a factor of three (Cassidy, T.A., and Johnson, R.E. in Icarus 176:499–507, 2005). The loss of all atomic species from Mercury’s exosphere other than H and He must be by non-thermal escape. The relative rates of photo-ionization, loss of photo-ions to the solar wind, entrainment of ions in the magnetosphere and direct impact of photo-ions to the surface are an area of active research. These source and loss processes will be discussed in this chapter.  相似文献   
7.
Advanced surveillance and communications are the main functions needed for an efficient Air Traffic Control/Management (ATC/ATM). In order to perform them over the entire Earth, a novel architecture is described and evaluated. It supplies the surveillance and data link capabilities of advanced Secondary Surveillance Radar (SSR) Mode S world-wide by means of a constellation of medium orbit satellites carrying SSR Mode S interrogators with phased-array antennas; no new equipment is required on-board aircraft, because the standard transponders are used. The rationale for the study, the system geometry, the link budget computation, the accuracy requirements as well as the subsequent design of the payload and of the optimized constellations needed for global coverage with high location accuracy are described. Moreover, details are given about the design of the spacecraft and of the main units of the space segment. The encouraging results of this overall system study pave the way to a demonstration based on simulators and ground prototypes of the critical parts  相似文献   
8.
Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa’s tenuous atmosphere and on the exchange of material between the moon’s surface and Jupiter’s magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon’s icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa’s tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA’s JUpiter ICy moons Explorer (JUICE) mission, and NASA’s Europa Clipper mission). We review the existing models of Europa’s tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.  相似文献   
9.
It is becoming clear that we can define two different types of nearby AGN belonging to the Seyfert 1 class (S1), on the basis of the match of the intensities of their Broad Balmer Lines (BBL) with the Boltzmann Plots (BP). These two types of S1 galaxies, that we call BP-S1 and NoBP-S1, are characterized, in first approximation, by Broad Line Regions (BLR) with different structural and physical properties. In this communication, we show that these features can be well pointed out by a multi-wavelength analysis of the continuum and of the broad recombination Hydrogen lines, that we carry out on a sample of objects detected at optical and X-ray frequencies. The investigation is addressed to verify whether BP-S1 are the ideal candidates for the study of the kinematical and structural properties of the BLR, in order to derive reliable estimates of the mass of their central engine and to constrain the properties of their nuclear continuum spectrum.  相似文献   
10.
Mercury is a poorly known planet, since the only space-based information comes from the three fly-bys performed in 1974 by the Mariner 10 spacecraft. Ground-based observations also provided some interesting results, but they are particularly difficult to obtain due to the planet’s proximity to the Sun. Nevertheless, the fact that the planet’s orbit is so close to the Sun makes Mercury a particularly interesting subject for extreme environmental conditions. Among a number of crucial scientific topics to be addressed, Mercury’s exosphere, its interaction with the solar wind and its origin from the surface of the planet, can provide important clues about planetary evolution. In fact, the Hermean exosphere is continuously eroded and refilled by these interactions, so that it would be more proper to consider the Hermean environment as a single, unified system – surface-exosphere-magnetosphere. These three parts are indeed strongly linked to each other. In recent years, the two missions scheduled to explore the iron planet, the NASA MESSENGER mission (launched in March 2004) and the ESA cornerstone mission (jointly with JAXA) BepiColombo (to be launched in 2012), have stimulated new interest in the many unresolved mysteries related to it. New ground-based observations, made possible by new technologies, have been obtained, and new simulation studies have been performed. In this paper some old as well as the very latest observations and studies related to the surface-exosphere-magnetosphere system are reviewed, outlining the investigations achievable by the planned space-based observations. This review intends to support the studies, in preparation of future data, and the definition of specific instrumentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号