首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   2篇
航天技术   1篇
  2003年   1篇
  2002年   1篇
  1982年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Mauersberger  K.  Krankowsky  D.  Janssen  C. 《Space Science Reviews》2003,106(1-4):265-279
A unique kinetic isotope effect has been found in the formation process of ozone molecules. Isotope enrichments of about 10% above statistically expected values were first discovered in atmospheric isotopomers 49O3 and 50O3 and later in many other molecular combinations. Most recently the source of this effect was identified through measurement of isotope-specific ozone formation rate coefficients which show a large variability of over 50%. Ozone molecule formation is a complex process since different reaction channels contribute to a specific isotopomer. In addition, fast oxygen isotope exchange reactions determine the abundance of atomic oxygen participating in ozone formation. The isotope enrichments observed are both pressure and temperature-dependent and they decrease at pressures above 100 mbar and toward lower temperatures. Ozone possesses not only one of the most unusual isotope anomalies, it also serves as a mediator by transferring heavy oxygen from the O2 reservoir to other species. Stratospheric isotope composition of CO2 has been recently measured with high accuracy and a pronounced isotopic signature was found which shows that 17O is preferentially transferred from O3 into CO2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
2.
During the last few years a gas expansion system, combined with a mass spectrometer has been developed and successfully flown in the stratosphere. Neutral gas particles are formed into a molecular beam which traverses the ion source of the mass spectrometer without wall interactions. Vertical profiles of constituents such as H2O, CO2 and O3 have been measured in the altitude range of 20 to 40 km during balloon descents. Isotopes of major atmospheric gases (N2, O2, Ar) provided in-flight calibration standards.Before each flight the mass spectrometer system was calibrated in the laboratory for many gases of interest, including ozone. Mixing ratios of ozone determined from recent flights have accuracies of better than 5%. The sensitivity of the system was sufficiently high to detect, in addition, the heavy isotope of ozone at mass 50. A pronounced enhancement of heavy ozone in the upper stratosphere has been found. The mass spectrometer system provides the unique opportunity to perform in the stratospherein-situ measurements combined with isotopic studies.  相似文献   
3.
Niemann  H.B.  Atreya  S.K.  Bauer  S.J.  Biemann  K.  Block  B.  Carignan  G.R.  Donahue  T.M.  Frost  R.L.  Gautier  D.  Haberman  J.A.  Harpold  D.  Hunten  D.M.  Israel  G.  Lunine  J.I.  Mauersberger  K.  Owen  T.C.  Raulin  F.  Richards  J.E.  Way  S.H. 《Space Science Reviews》2002,104(1-4):553-591
The Gas Chromatograph Mass Spectrometer (GCMS) on the Huygens Probe will measure the chemical composition of Titan's atmosphere from 170 km altitude (∼1 hPa) to the surface (∼1500 hPa) and determine the isotope ratios of the major gaseous constituents. The GCMS will also analyze gas samples from the Aerosol Collector Pyrolyser (ACP) and may be able to investigate the composition (including isotope ratios) of several candidate surface materials. The GCMS is a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns. The mass spectrometer employs five ion sources sequentially feeding the mass analyzer. Three ion sources serve as detectors for the GC columns and two are dedicated to direct atmosphere sampling and ACP gas sampling respectively. The instrument is also equipped with a chemical scrubber cell for noble gas analysis and a sample enrichment cell for selective measurement of high boiling point carbon containing constituents. The mass range is 2 to 141 Dalton and the nominal detection threshold is at a mixing ratio of 10− 8. The data rate available from the Probe system is 885 bit/s. The weight of the instrument is 17.3 kg and the energy required for warm up and 150 minutes of operation is 110 Watt-hours. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号