首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   3篇
航天技术   4篇
  2011年   1篇
  2004年   1篇
  1996年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有7条查询结果,搜索用时 46 毫秒
1
1.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
2.
We have selected four widely different flares from the early period of operations of the Hard X-Ray Imaging Spectrometer (HXIS) on SMM to illustrate the characteristic imaging properties of this experiment. For the small flare of April 4, 1980, we demonstrate the instrument's capability for locating a compact source. In the weak, but extensive, flare of April 6 we show how well the instrument can display spatial structure, and also the low level of the instrument background. In the 1B flare of April 7 we are able to locate positions of the X-ray emission in the soft and hard channels, and estimate the positional variations of the emission patches. Finally, in the IN flare of April 10, which produced the strongest hard X-ray burst we have seen so far, we repeat some of the studies made for the April 7 event, and also demonstrate the capability of the HXIS instrument to study the development, with high time resolution, of individual 8″ × 8″ elements of the flare.  相似文献   
3.
This paper deals with the behavior of the annual cycle of total ozone (ACO3) and its amplitude (O3AMP) in the latitudinal belt from 20°N to 60°N. The prominent feature of the O3AMP spatial pattern is the sharp maximum over the north-east coast of Asia. The spatial correlation of O3AMP with its highest/lowest value varies with location: in the middle latitudes it correlates predominantly with the values of annual maxima of total ozone, while in the lower latitudes, there is a strong negative correlation with the values of ACO3 minima. Regarding temporal evolution of O3AMP we detected distinct negative trend in the period of 1979–1995 which is caused by stronger negative trend of maxima than the negative trend of minima in ACO3. In the period 1995–2008 we found the positive trend of ACO3 in most regions due to stronger positive trend of maxima than that of minima in ACO3 in the middle latitudes (especially over the central and northern Europe and the north-east Asia). In the lower latitudes a weak negative trend of O3AMP was identified and linked to weaker positive trend of maxima than positive trend of minima in ACO3. The behavior of the temporal trends was linked to the changes in Brewer–Dobson circulation and to the trends of tropopause pressure.  相似文献   
4.
5.
The Solar Maximum Year is a world-wide cooperative project to gain more insight in certain aspects of solar flares. It consists of three sub-programs: The Flare Build-up Study (FBS), the Study of Energy Release from Flares (SERF), and the Study of Travelling Interplanetary Phenomena (STIP). These programs are described. We also describe space observations to be performed during SMY, particularly the Solar Maximum Mission Satellite.Invited talk, presented at 22nd COSPAR Meeting in Bangalore on 7 June, 1979.  相似文献   
6.
We describe the development of the limb flare of 30 April 1980, 20:20 UT, as observed by the Hard X-ray Imaging Spectrometer (HXIS) aboard the Solar Maximum Mission (SMM). It consisted of a short-lived bright nucleus (FWHM < 10,000 km), just inside the Sun's limb; a longer lasting tongue, extending to a height of 30,000 km, and a more complicated feature, approximately situated at the Sun's limb. The tongue was a pre-existing magnetic structure that started emitting X-rays only a few seconds after the bright nucleus, and which had a slightly higher temperature than the nucleus; its X-ray emission may be caused by electrons escaped from the nucleus.  相似文献   
7.
Observations of dust in the solar system and in the diffuse interstellar medium are summarized. New measurements of interstellar dust in the heliosphere extend our knowledge about micron-sized and bigger particles in the local interstellar medium. Interplanetary grains extend from submicron- to meter-sized meteoroids. The main destructive effect in the solar system are mutual collisions which provide an effective source for smaller particles. In the diffuse interstellar medium sputtering is believed to be the dominant destructive effect on submicron-sized grains. However, an effective supply mechanism for these grains is presently unknown. The dominant transport mechanisms in the solar system is the Poynting-Robertson effect which sweeps meteoroids bigger than about one micron in size towards the sun. Smaller particles are driven out of the solar system by radiation pressure and electromagnetic interaction with the interplanetary magnetic field. In the diffuse interstellar medium coupling of charged interstellar grains to large-scale magnetic fields seem to dominate frictional coupling of dust to the interstellar gas.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号