首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   1篇
航天技术   5篇
  2020年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  1989年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The responses of a piezoelectric lead zirconate titanate (PZT) element to hypervelocity collisions were experimentally studied. In this study, the particles of masses ranging from 0.3 to 10 fg were made to collide with PZT at velocities between 20 and 96 km/s. The amplitude and the corresponding rise time of the single-pulse output signals that were produced in the piezoelectric PZT element were measured to determine the possible collision states. The results revealed an apparently multimodal output; three classes were assumed to be involved in the pulse formation mechanism. The amplitude and rise time were sensitive to the collision velocity. The multimodal behavior implied that the PZT-based cosmic dust detectors should be calibrated according to the class they belong to.  相似文献   
2.
Space Science Reviews - In this chapter, we review the contribution of space missions to the determination of the elemental and isotopic composition of Earth, Moon and the terrestrial planets, with...  相似文献   
3.
A cosmic dust monitor for use onboard a spacecraft is currently being developed using a piezoelectric lead zirconate titanate element (PZT). Its characteristics of the PZT sensor is studied by ground-based laboratory impact experiments using hypervelocity particles supplied by a Van de Graaff accelerator. The output signals obtained from the sensor just after the impact appeared to have a waveform that was explicitly related to the particle’s impact velocity. For velocities less than ∼6 km/s, the signal showed an oscillation pattern and the amplitude was proportional to the momentum of the impacting particle. For higher velocities, the signal gradually changed to a single waveform. The rise time of this single waveform was proportional to the particle’s velocity for velocities above ∼6 km/s. The present paper reports on results for the low velocity case and especially discusses the effect of an outer coating of the sensor with a paint, which is used to reduce heating by solar radiation.  相似文献   
4.
A cosmic dust detector is currently being developed using a piezoelectric lead zirconate titanate (PZT) element. The characteristics of the multilayered detector (MD), which was composed of one hundred PZT disks, were investigated by bombarding it with hypervelocity iron particles supplied by a Van de Graaff accelerator. It was confirmed that there was a linear relationship between the signal amplitude observed from MD and the momentum of the particles. As compared with the single-layered detector (SD) that was composed of one PZT disk, it was found that the sensitivity of MD was ∼3 times higher than that of SD within the limits of the experimental conditions.  相似文献   
5.
Direct measurements on cosmic ray protons through iron above about 1 TeV/amu have been performed in a series of balloon-borne experiments with emulsion chambers. The measured energy spectra of protons and helium are power laws with exponents of 2.77 ± 0.09 and 2.72 ± 0.11 in the energy range 5 to 500 TeV and 2 to 50 TeV/amu, respectively. The proton spectrum shows no evidence of the steepening near 2 TeV which was reported by other experiments. Helium has a slightly higher intensity compared to extrapolations from lower energy measurements. The heavier elements, carbon to sulfur, show a small tendency for intensity enhancement in the relative abundance above 10 TeV/amu.  相似文献   
6.
The detector characteristics of a pentagonal element were studied by colliding it with hypervelocity micro-particles. A charge-sensitive amplifier was developed for the element of its capacitance ∼10 nF. The output amplitudes were expressed as a linear function of the momentum at collision. Empirical formulas obtained from on-ground experiments could be used for the calibration of the detector. The pentagonal element was potential to measure the momentum during collision from the output amplitude. A set of electrodes on the surface was used to confirm the measurement of the coordinates at collision. A possible application of this pentagonal element on a real-time dust detector was discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号