首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   0篇
航空   148篇
航天技术   43篇
航天   29篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   4篇
  2018年   14篇
  2017年   6篇
  2016年   3篇
  2015年   7篇
  2014年   2篇
  2013年   10篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   15篇
  2008年   9篇
  2007年   12篇
  2006年   14篇
  2005年   8篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   8篇
  2000年   8篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1986年   1篇
  1985年   4篇
  1984年   10篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
1.
Observations and simulations show that Mars' atmosphere has large seasonal variations. Total atmospheric density can have an order of magnitude latitudinal variation at exobase heights. By numerical simulations we show that these latitude variations in exobase parameters induce asymmetries in the hydrogen exosphere that propagate to large distances from the planet. We show that these asymmetries in the exosphere produce asymmetries in the fluxes of energetic neutral atoms (ENAs) and soft X-rays produced by charge exchange between the solar wind and exospheric hydrogen. This could be an explanation for asymmetries that have been observed in ENA and X-ray fluxes at Mars.  相似文献   
2.
The Electron Beam Instrument (F6) onFreja is the first attempt to apply the electron drift technique in a region of large ambient magnetic fields. The paper describes the operational principles, the technical realization, and the difficulties encountered in the derivation of the electric fields.  相似文献   
3.
While atmospheric Cherenkov telescopes have a small field of view and a small duty fraction, arrays of particle detectors on ground have a 1 sr field of view and a 100% duty fraction. On the other hand, particle detector arrays have a much higher energy threshold and an inferior hadron rejection as compared to Cherenkov telescopes. Low threshold particle detector arrays would have potential advantages over Cherenkov telescopes in the search for episodic or unexpected sources of gamma rays in the multi-TeV energy range. Ways to improve the threshold and hadron rejection of arrays are shown, based on existing technology for the timing method (with scintillator or water Cherenkov counters) and the tracking method (with tracking detectors). The performance that could be achieved is shown by examples for both methods. At mountain altitude (about 4000 m or above) an energy threshold close to 1 TeV could be achieved. For any significant reduction of the hadronic background by selecting muon-poor showers a muon detection area of at least 1000 m2 is required, even for a compact array.  相似文献   
4.
Application of digital cross-correlation spectroscopy to the spectra of the W Serpentis binaries SX Cas and RX Cas has allowed an accurate determination of the orbits and rotations of the (mass-losing) K-subgiant secondary components. The distortion of the primary radial-velocity curves due to the influence of the prominent accretion disks in these systems has been modelled to first order. This enables us to estimate k 1, and thereby the mass ratio q ≈ 0.30, to within ~ ± 20%. The absolute radii of the secondaries are derived independently from the observed rotations and periods, assuming synchronous rotation. They show that the stars fill their Roche lobes, or at least very nearly so. Rough fits to the available photometry shows both primaries to be unevolved mid-B stars; that in RX Cas appears completely obscured by the disk. Preliminary spectroscopic data for W Ser and W Cru show some promise for similar analyses of these systems.  相似文献   
5.
The solar wind termination shock is described as a multi-fluid phenomenon taking into account the magnetohydrodynamic self-interaction of a multispecies plasma consisting of solar wind ions, pick-up ions and shock-generated anomalous cosmic ray particles. The spatial diffusion of these high energy particles relative to the resulting, pressure-modified solar wind flow structure is described by a coupled system of differential equations describing mass-, momentum-, and energy-flow continuities for all plasma components. The energy loss due to escape of energetic particles (MeV) from the precursor into the inner heliosphere is taken into account. We determine the integrated properties of the anomalous cosmic ray gas and the low-energy solar wind. Also the variation of the compression ratio of the shock structure is quantitatively determined and is related to the pick-up ion energization efficiency and to the mean energy of the downstream anomalous cosmic ray particles. The variation of the resulting shock structure and of the solar wind sheath plasma extent beyond the shock is discussed with respect to its consequences for the LISM neutral gas filtration and the threedimensional shape of the heliosphere.  相似文献   
6.
7.
Space Science Reviews - Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in...  相似文献   
8.
The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ~0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided.  相似文献   
9.
In this paper we start from the most recently observed fact that the solar wind plasma after passage over the termination shock is still supersonic with a Mach number of about 2. To explain this unexpected phenomenon and to predict the evolution of properties of the downstream plasma flow we here consider a two-fluid proton plasma with pick-up protons as a separate suprathermal, second proton fluid. We then formulate a self-consistent system of hydrodynamical conservation equations coupling the two fluids by dynamical and thermodynamical coupling terms and taking into account the effects of newly incorporated protons due to charge exchange with the H-atoms in the heliosheath. This then allows us to predict that in the most probable case the solar wind protons will become subsonic over a distance of about 30 AU downstream of the shock. As we can also show, it may, however, happen that the plasma mixture later again reconverts to a supersonic signature and has to undergo a second shock before meeting the heliopause.  相似文献   
10.
Fahr  H. J.  Neutsch  W.  Grzedzielski  S.  Macek  W.  Ratkiewicz-Landowska  R. 《Space Science Reviews》1986,43(3-4):329-381
Existing heliopause models are critically rediscussed under the new aspect of possible plasma mixing between the solar wind and the ambient ionized component of the local interstellar medium (LISM). Based on current kinetic plasma theories, effective diffusion rates across the heliopause are evaluated for several models with turbulence caused by electrostatic or electromagnetic interactions that could be envisaged in this context. Some specific cases that may lead to high diffusion rates are investigated, especially in regard to their LISM magnetic field dependence.For weak fields (less than 10–7 G), macroscopic hydrodynamic instabilities, such as of Rayleigh-Taylor or Kelvin-Helmholtz-types, can be excited. The resulting plasma mixing rates at the heliopause may amount to 20–30% of the impinging mass flow.Recently, an unconventional new approach to the problem for the case of tangential magnetic fields at the heliopause was published in which a continuous change of the plasma properties within an extended boundary layer is described by a complete set of two-fluid plasma equations including a hybrid MHD-formulation of wave-particle interaction effects. If a neutral sheet is assumed to exist within the boundary layer, the magnetic field direction is proven to be constant for a plane-parallel geometry. Considering the electric fields and currents in the layer, an interesting relationship between the field-reconnection probability and the electric conductivity can be derived, permitting a quantitative determination of either of these quantities.An actual value for the electrical conductivity is derived here on the basis of electron distribution functions given by a superposition of Maxwellians with different temperatures. Using two-stream instability theory and retaining only the most unstable modes, an exact solution for the density, velocity, and magnetic and electric fields can be obtained. The electrical conductivity is then shown to be six orders of magnitude lower than calculated by conventional formulas. Interestingly, this leads to an acceptable value of 0.1 for the reconnection coefficient.By analogy with the case of planetary magnetopauses, it is shown here for LISM magnetic fields of the order of 10–6 G or larger that field reconnection processes may also play an important role for the plasma mixing at the heliopause. The resulting plasma mixing rate is estimated to amount to an average value of 10% of the incident mass flow. It is suggested here that the dependence of the cosmic-ray penetration into the heliosphere on the distribution of reconnecting areas at the heliopause may provide a means of deriving the strength and orientation of the LISM field.A series of observational implications for the expected plasma mixing at the heliopause is discussed in the last part of the paper. In particular, consequences are discussed for the generation of radio noise at the heliopause, for the penetration of LISM neutrals into the heliosphere, for the propagation of cosmic rays towards the inner part of the solar system and for convective electric field mergings into the heliosphere during the course of the solar cycle, depending on the solar cycle variations. With concern to a recent detection of electrostatic plasma waves by plasma receivers on Voyagers 1 and 2, we come to an interesting alternate explanation: the heliopause, rather than the heliospheric shock front, could be responsible for the generation of these waves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号