首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
航空   21篇
  2018年   7篇
  2017年   9篇
  2012年   3篇
  2001年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Based on an updated model of the regolith’s elastic properties, we simulate the ambient vibrations background wavefield recorded by InSight’s Seismic Experiment for Interior Structure (SEIS) on Mars to characterise the influence of the regolith and invert SEIS data for shallow subsurface structure. By approximately scaling the synthetics based on seismic signals of a terrestrial dust devil, we find that the high-frequency atmospheric background wavefield should be above the self-noise of SEIS’s SP sensors, even if the signals are not produced within 100–200 m of the station. We compare horizontal-to-vertical spectral ratios and Rayleigh wave ellipticity curves for a surface-wave based simulation on the one hand with synthetics explicitly considering body waves on the other hand and do not find any striking differences. Inverting the data, we find that the results are insensitive to assumptions on density. By contrast, assumptions on the velocity range in the upper-most layer have a strong influence on the results also at larger depth. Wrong assumptions can lead to results far from the true model in this case. Additional information on the general shape of the curve, i.e. single or dual peak, could help to mitigate this effect, even if it cannot directly be included into the inversion. We find that the ellipticity curves can provide stronger constraints on the minimum thickness and velocity of the second layer of the model than on the maximum values. We also consider the effect of instrumentation resonances caused by the lander flexible modes, solar panels, and the SEIS levelling system. Both the levelling system resonances and the lander flexible modes occur at significantly higher frequencies than the expected structural response, i.e. above 35 Hz and 20 Hz, respectively. While the lander and solar panel resonances might be too weak in amplitude to be recorded by SEIS, the levelling system resonances will show up clearly in horizontal spectra, the H/V and ellipticity curves. They are not removed by trying to extract only Rayleigh-wave dominated parts of the data. However, they can be distinguished from any subsurface response by their exceptionally low damping ratios of 1% or less as determined by random decrement analysis. The same applies to lander-generated signals observed in actual data from a Moon analogue experiment, so we expect this analysis will be useful in identifying instrumentation resonances in SEIS data.  相似文献   
2.
The evolution of Mars is discussed using results from the recent Mars Global Surveyor (MGS) and Mars Pathfinder missions together with results from mantle convection and thermal history models and the chemistry of Martian meteorites. The new MGS topography and gravity data and the data on the rotation of Mars from Mars Pathfinder constrain models of the present interior structure and allow estimates of present crust thickness and thickness variations. The data also allow estimates of lithosphere thickness variation and heat flow assuming that the base of the lithosphere is an isotherm. Although the interpretation is not unambiguous, it can be concluded that Mars has a substantial crust. It may be about 50 km thick on average with thickness variations of another ±50 km. Alternatively, the crust may be substantially thicker with smaller thickness variations. The former estimate of crust thickness can be shown to be in agreement with estimates of volcanic production rates from geologic mapping using data from the camera on MGS and previous missions. According to these estimates most of the crust was produced in the Noachian, roughly the first Gyr of evolution. A substantial part of the lava generated during this time apparently poured onto the surface to produce the Tharsis bulge, the largest tectonic unit in the solar system and the major volcanic center of Mars. Models of crust growth that couple crust growth to mantle convection and thermal evolution are consistent with an early 1 Gyr long phase of vigorous volcanic activity. The simplest explanation for the remnant magnetization of crustal units of mostly the southern hemisphere calls for an active dynamo in the Noachian, again consistent with thermal history calculations that predict the core to become stably stratified after some hundred Myr of convective cooling and dynamo action. The isotope record of the Martian meteorites suggest that the core formed early and rapidly within a few tens of Myr. These data also suggest that the silicate rock component of the planet was partially molten during that time. The isotope data suggest that heterogeneity resulted from core formation and early differentiation and persisted to the recent past. This is often taken as evidence against vigorous mantle convection and early plate tectonics on Mars although the latter assumption can most easily explain the early magnetic field. The physics of mantle convection suggests that there may be a few hundred km thick stagnant, near surface layer in the mantle that would have formed rapidly and may have provided the reservoirs required to explain the isotope data. The relation between the planform of mantle convection and the tectonic features on the surface is difficult to entangle. Models call for long wavelength forms of flow and possibly a few strong plumes in the very early evolution. These plumes may have dissolved with time as the core cooled and may have died off by the end of the Noachian.  相似文献   
3.
The Rotation and Interior Structure Experiment (RISE) on-board the InSight mission will use the lander’s X-band (8 GHz) radio system in combination with tracking stations of the NASA Deep Space Network (DSN) to determine the rotation of Mars. RISE will measure the nutation of the Martian spin axis, detecting for the first time the effect of the liquid core of Mars and providing in turn new constraints on the core radius and density. RISE will also measure changes in the rotation rate of Mars on seasonal time-scales thereby constraining the atmospheric angular momentum budget. Finally, RISE will provide a superb tie between the cartographic and inertial reference frames. This paper describes the RISE scientific objectives and measurements, and provides the expected results of the experiment.  相似文献   
4.
5.
In support of the InSight mission in which two instruments (the SEIS seismometer and the \(\mbox{HP}^{3}\) heat flow probe) will interact directly with the regolith on the surface of Mars, a series of mechanical tests were conducted on three different regolith simulants to better understand the observations of the physical and mechanical parameters that will be derived from InSight. The mechanical data obtained were also compared to data on terrestrial sands. The density of the regolith strongly influences its mechanical properties, as determined from the data on terrestrial sands. The elastoplastic compression volume changes were investigated through oedometer tests that also provided estimates of possible changes in density with depth. The results of direct shear tests provided values of friction angles that were compared with that of a terrestrial sand, and an extrapolation to lower density provided a friction angle compatible with that estimated from previous observations on the surface of Mars. The importance of the contracting/dilating shear volume changes of sands on the dynamic penetration of the mole was determined, with penetration facilitated by the \(\sim1.3~\mbox{Mg/m}^{3}\) density estimated at the landing site. Seismic velocities, measured by means of piezoelectric bender elements in triaxial specimens submitted to various isotropic confining stresses, show the importance of the confining stress, with lesser influence of density changes under compression. A power law relation of velocity as a function of confining stress with an exponent of 0.3 was identified from the tests, allowing an estimate of the surface seismic velocity of 150 m/s. The effect on the seismic velocity of a 10% proportion of rock in the regolith was also studied. These data will be compared with in situ data measured by InSight after landing.  相似文献   
6.
The presence of rocks in the ejecta of craters at the InSight landing site in southwestern Elysium Planitia indicates a strong, rock-producing unit at depth. A finer regolith above is inferred by the lack of rocks in the ejecta of 10-m-scale craters. This regolith should be penetrable by the mole of the Heat Flow and Physical Properties Package (HP3). An analysis of the size-frequency distribution (SFD) of 7988 rocky ejecta craters (RECs) across four candidate landing ellipses reveals that all craters >200 m in diameter and \({<}750 \pm 30\ \mbox{Ma}\) in age have boulder-sized rocks in their ejecta. The frequency of RECs however decreases significantly below this diameter (\(D\)), represented by a roll-off in the SFD slope. At \(30\ \text{m} < D < 200\ \text{m}\), the slope of the cumulative SFD declines to near zero at \(D < 30\ \text{m}\). Surface modification, resolution limits, or human counting error cannot account for the magnitude of this roll-off. Rather, a significant population of <200 m diameter fresh non-rocky ejecta craters (NRECs) here indicates the presence of a relatively fine-grained regolith that prevents smaller craters from excavating the strong rock-producing unit. Depth to excavation relationships and the REC size thresholds indicate the region is capped by a regolith that is almost everywhere 3 m thick but may be as thick as 12 to 18 m. The lower bound of the thickness range is independently confirmed by the depth to the inner crater in concentric or nested craters. The data indicate that 85% of the InSight landing region is covered by a regolith that is at least 3 m thick. The probability of encountering rockier material at depths >3 m by the HP3 however increases significantly due to the increase in boulder-size rocks in the lower regolith column, near the interface of the bedrock.  相似文献   
7.
This work describes the interpretation of THEMIS-derived thermal inertia data at the Eberswalde, Gale, Holden, and Mawrth Vallis Mars Science Laboratory (MSL) candidate landing sites and determines how thermophysical variations correspond to morphology and, when apparent, mineralogical diversity. At Eberswalde, the proportion of likely unconsolidated material relative to exposed bedrock or highly indurated surfaces controls the thermal inertia of a given region. At Gale, the majority of the landing site region has a moderate thermal inertia (250 to 410?J?m?2?K?1?s?1/2), which is likely an indurated surface mixed with unconsolidated materials. The primary difference between higher and moderate thermal inertia surfaces may be due to the amount of mantling material present. Within the mound of stratified material in Gale, layers are distinguished in the thermal inertia data; the MSL rover could be traversing through materials that are both thermophysically and compositionally diverse. The majority of the Holden ellipse has a thermal inertia of 340 to 475?J?m?2?K?1?s?1/2 and consists of bed forms with some consolidated material intermixed. Mawrth Vallis has a mean thermal inertia of 310?J?m?2?K?1?s?1/2 and a wide variety of materials is present contributing to the moderate thermal inertia surfaces, including a mixture of bedrock, indurated surfaces, bed forms, and unconsolidated fines. Phyllosilicates have been identified at all four candidate landing sites, and these clay-bearing units typically have a similar thermal inertia value (400 to 500?J?m?2?K?1?s?1/2), suggesting physical properties that are also similar.  相似文献   
8.
We investigated the possible seismic signatures of dust devils on Mars, both at long and short period, based on the analysis of Earth data and on forward modeling for Mars. Seismic and meteorological data collected in the Mojave Desert, California, recorded the signals generated by dust devils. In the 10–100 s band, the quasi-static surface deformation triggered by pressure fluctuations resulted in detectable ground-tilt effects: these are in good agreement with our modeling based on Sorrells’ theory. In addition, high-frequency records also exhibit a significant excitation in correspondence to dust devil episodes. Besides wind noise, this signal includes shallow surface waves due to the atmosphere-surface coupling and is used for a preliminary inversion of the near-surface S-wave profile down to 50 m depth. In the case of Mars, we modeled the long-period signals generated by the pressure field resulting from turbulence-resolving Large-Eddy Simulations. For typical dust-devil-like vortices with pressure drops of a couple Pascals, the corresponding horizontal acceleration is of a few nm/s2 for rocky subsurface models and reaches 10–20 nm/s2 for weak regolith models. In both cases, this signal can be detected by the Very-Broad Band seismometers of the InSight/SEIS experiment up to a distance of a few hundred meters from the vortex, the amplitude of the signal decreasing as the inverse of the distance. Atmospheric vortices are thus expected to be detected at the InSight landing site; the analysis of their seismic and atmospheric signals could lead to additional constraints on the near-surface structure, more precisely on the ground compliance and possibly on the seismic velocities.  相似文献   
9.
Mars Science Laboratory Mission and Science Investigation   总被引:5,自引:0,他引:5  
Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (~23?months), and drive capability of at least 20?km. Curiosity’s science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a?laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity’s field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5?km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a mountain to achieve its primary science goals. The Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is responsible for the acquisition of rock and soil samples from the Martian surface and the processing of these samples into fine particles that are then distributed to the analytical science instruments. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments (APXS, MAHLI) on rock and soil targets. SA/SPaH consists of a robotic arm and turret-mounted devices on the end of the arm, which include a drill, brush, soil scoop, sample processing device, and the mechanical and electrical interfaces to the two contact science instruments. SA/SPaH also includes drill bit boxes, the organic check material, and an observation tray, which are all mounted on the front of the rover, and inlet cover mechanisms that are placed over the SAM and CheMin solid sample inlet tubes on the rover top deck.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号