首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
航空   16篇
  2009年   1篇
  2008年   1篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  1999年   4篇
  1998年   1篇
  1995年   1篇
排序方式: 共有16条查询结果,搜索用时 140 毫秒
1.
An open problem of along-track interferometry (ATI) for synthetic aperture radar (SAR) sensing of ocean surface currents is the need of ancillary wind information for inversion of Doppler centroid measurements, that have to be compensated for the propagation velocity of advancing and/or receding Bragg scatterers. We propose three classes of estimators which exploit multibaseline (MB) ATI acquisition and Doppler resolution for robust data inversion under different degrees of a priori information about the wind direction and the value of the characteristic Bragg frequency. Performance analysis and comparison with conventional ATI show that the proposed MB estimators can produce accurate velocity estimates in the absence of detailed ancillary data.  相似文献   
2.
Structures for radar detection in compound Gaussian clutter   总被引:1,自引:0,他引:1  
The problem of coherent radar target detection in a background of non-Gaussian clutter modeled by a compound Gaussian distribution is studied here. We show how the likelihood ratio may be recast into an estimator-correlator form that shows that an essential feature of the optimal detector is to compute an optimum estimate of the reciprocal of the unknown random local power level. We then proceed to show that the optimal detector may be recast into yet another form, namely a matched filter compared with a data-dependent threshold. With these reformulations of the optimal detector, the problem of obtaining suboptimal detectors may be systematically studied by either approximating the likelihood ratio directly, utilizing a suboptimal estimate in the estimator-correlator structure or utilizing a suboptimal function to model the data-dependent threshold in the matched filter interpretation. Each of these approaches is studied to obtain suboptimal detectors. The results indicate that for processing small numbers of pulses, a suboptimal detector that utilizes information about the nature of the non-Gaussian clutter can be implemented to obtain quasi-optimal performance. As the number of pulses to be processed increases, a suboptimal detector that does not require information about the specific nature of the non-Gaussian clutter may be implemented to obtain quasi-optimal performance  相似文献   
3.
Maximum Likelihood (ML) algorithms and Cramer-Rao (CR) bounds for the location and scale parameters of the Gumbel distribution are discussed. First we consider the case in which the scale parameter is known, obtaining the estimator of the location parameter by solving the likelihood equation and then evaluating its performance. We next consider the case where both the location parameter and the scale parameter are unknown and need to be estimated simultaneously from the reference samples. For this case, performance is analyzed by means of Monte Carlo simulation and compared with the asymptotic CR bound  相似文献   
4.
Deals with the problem of detecting subspace random signals against correlated non-Gaussian clutter exploiting different degrees of knowledge on target and clutter statistical characteristics. The clutter process is modeled by the compound-Gaussian distribution. In the first part of the paper, the optimum Neyman-Pearson (NP) detector, the generalized likelihood ratio test (GLRT), and a constant false-alarm rate (CFAR) detector are sequentially derived both for the Gaussian and the compound-Gaussian scenarios. Different interpretations of the various detectors are provided to highlight the relationships and the differences among them. In particular, we show how the GLRT detector may be recast into an estimator-correlator form and into another form, namely a generalized whitening-matched filter (GWMF), which is the GLRT detector against Gaussian disturbance, compared with a data-dependent threshold. In the second part of this paper, the proposed detectors are tested against both simulated data and measured high resolution sea clutter data to investigate the dependence of their performance on the various clutter and signal parameters.  相似文献   
5.
Matched subspace CFAR detection of hovering helicopters   总被引:4,自引:0,他引:4  
A constant false alarm rate (CFAR) strategy for detecting a Gaussian distributed random signal against correlated non-Gaussian clutter is developed. The proposed algorithm is based on Scharf's matched subspace detector (MSD) and has the CFAR property with respect to the clutter amplitude probability density function (apdf), provided that the clutter distribution belongs to the compound-Gaussian family and the clutter covariance matrix is known to within a scale factor. Analytical expressions of false alarm and detection probabilities are derived. An application to the problem of detecting hovering helicopters against vegetated ground clutter is reported  相似文献   
6.
Validation of windblown radar ground clutter spectral shape   总被引:1,自引:0,他引:1  
We investigate the robustness of the linear matched filter (MF) operating in a Gaussian environment in the presence of a mismatch between the design clutter-power spectral density (PSD) shape and the actual one. The Gaussian, the power-law (PL), and the double-exponential spectral models have been considered with the goal of investigating which one fits best for windblown foliage. We analyze the MF performance in terms of improvement factor, probability of false alarm, and probability of detection by making use of the theoretical models and measured X-band ground clutter data. The numerical results validate the double-exponential spectral model for windblown foliage by showing that the differences in performance prediction between using measured clutter data and modeled clutter data of various spectral shapes (viz., Gaussian, FL, and double-exponential) are minimized when the spectral model employed is of double-exponential shape  相似文献   
7.
We derive the optimum radar receiver to detect fluctuating and non-fluctuating targets against a disturbance which is modeled as a mixture of coherent K-distributed and Gaussian-distributed clutter. In addition, thermal noise, which is always present in the radar receiver, is considered. We discuss the implementation of the optimum coherent detector, which derives from the likelihood ratio test under the assumption of perfectly known disturbance statistics, and evaluate its performance via a numerical procedure, when possible, and via Monte Carlo simulation otherwise. Moreover, we compare the performance of the optimum detector with those of two detectors which are optimum for totally Gaussian and totally K-distributed clutter respectively, when they are fed with such a mixed disturbance. We conclude that, though the optimum detector has a larger computational cost, it provides sensibly better detection performance than the mismatched detectors in a number of operational situations. Thus, there is a need to derive suboptimum target detectors against the mixture of disturbances which trade-off the detection performance and the implementation complexity  相似文献   
8.
Statistical analyses of measured radar ground clutter data   总被引:1,自引:0,他引:1  
The performance of ground-based surveillance radars strongly depends on the distribution and spectral characteristics of ground clutter. To design signal processing algorithms that exploit the knowledge of clutter characteristics, a preliminary statistical analysis of ground-clutter data is necessary. We report the results of a statistical analysis of X-band ground-clutter data from the MIT Lincoln Laboratory Phase One program. Data non-Gaussianity of the in-phase and quadrature components was revealed, first by means of histogram and moments analysis, and then by means of a Gaussianity test based on cumulants of order higher than the second; to this purpose parametric autoregressive (AR) modeling of the clutter process was developed. The test is computationally attractive and has constant false alarm rate (CFAR). Incoherent analysis has also been carried out by checking the fitting to Rayleigh, Weibull, log-normal, and K-distribution models. Finally, a new modified Kolmogorov-Smirnoff (KS) goodness-of-fit test is proposed; this modified test guarantees good fitting in the distribution tails, which is of fundamental importance for a correct design of CFAR processors  相似文献   
9.
Layover solution in multibaseline SAR interferometry   总被引:1,自引:0,他引:1  
In this work, spectral estimation techniques are used to exploit baseline diversity of a multichannel interferometric synthetic aperture radar (SAR) system and overcome the layover problem. This problem arises when different height contributions collapse in the same range-azimuth resolution cell, due to the presence of strong terrain slopes or discontinuities in the sensed scene. We propose a multilook approach to counteract the presence of multiplicative noise, which is due to the extended nature of natural targets; to this purpose we extend the RELAX algorithm to the multilook data scenario (M-RELAX). A thorough performance analysis of nonparametric (beamforming and Capon) and parametric (root MUSIC and M-RELAX) techniques is carried out based on Monte Carlo simulations and Cramer-Rao lower bounds (CRLB) calculation. The results suggest the superiority of parametric methods over nonparametric ones.  相似文献   
10.
We propose a beamsplitting-like approach to estimate the directions of arrival (DOA) of multiple radar targets present in the mainlobe of a rotating antenna. The proposed method is based on the maximum likelihood (ML) technique and it avoids the need for a difference channel by exploiting knowledge of the antenna main beam pattern. Two scenarios are considered: multiple targets with unknown deterministic complex amplitudes and multiple targets with Gaussian distributed random complex amplitudes. The performance of the proposed estimator is investigated through Monte Carlo simulation and it is compared with the Cramer-Rao lower bound (CRLB).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号