首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   3篇
  1994年   1篇
  1987年   2篇
排序方式: 共有3条查询结果,搜索用时 78 毫秒
1
1.
An adaptive array architecture is described which has improved convergence speed over the conventional Applebaum array when the eigenvalue spread of the input signal covariance matrix is large. The architecture uses N+1 Applebaum adaptive arrays in a two-layer cascaded configuration. The gain constants in the first layer are set so that large interfering sources are quickly nulled, but small interfering sources are suppressed more slowly. Since the first layer removes the large interfering signals, the gain constant for the second layer can be set to a large value to quickly null the smaller interferers. The adaptation time is examined for several combinations of signal levels and array sizes. It is shown that, in many signal environments, the computational requirements for the cascaded array compare favorably with those of conventional sample matrix inversion (SMI) methods for large arrays  相似文献   
2.
The performance of binary phase-shift-keyed (BPSK), binarydifferential phase-shift-keyed (DPSK), and quadrature phase-shift-keyed(QPSK) communication systems that use adaptive arrayantennas for interference rejection is examined. The case where thedesired signal is corrupted by continuous wave (CW) interference isspecifically addressed. The performance of the adaptive array andthe ideal BPSK, DPSK, and QPSK detectors are evaluated first andthe results of these calculations are combined to determine theoverall system performance. The bit-error probability at the systemoutput is used as the performance measure. Several examples arepresented which illustrate the effects of signal powers, arrivalangles, frequencies, and the array input bandwidth.  相似文献   
3.
The performance of a bandlimited binary phase-shift-keyed (BPSK) communication system is examined when the received BPSK signal is corrupted by both thermal noise and a directional Gaussian noise interfering signal. The system uses an LMS adaptive array to suppress this interference. The effects of signal power levels, arrival angles, bandwidths, and the array bandwidth are examined. The performance of a system that uses tapped delay lines for the array weights is also examined. It is shown that the performance of a system with tapped delay lines is not affected by the interference bandwidth for a single interferer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号