首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
航空   9篇
航天技术   1篇
  2016年   2篇
  2013年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有10条查询结果,搜索用时 640 毫秒
1
1.
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented.  相似文献   
2.
The last decade has seen a period of rapid growth in our understanding of the processes which occur in the auroral regions. Much of our understanding is based on the copious new observations which have been made available in the auroral community. The present work is a short overview of the plasma conditions which obtain throughout much of the auroral region. It covers the diffuse and discrete auroral electron precipitation in the morning and evening oval, cusp, and polar cap. The ionospheric ion outflow throughout the high latitude regime is also described and related to the electron observations.  相似文献   
3.
4.
5.
“Battlefield awareness” is critical to the success of future military operations. Existing and new sensor platforms will provide the necessary surveillance data; DARPA is developing the systems needed to turn the sensor data into meaningful information for the commanders. A central thrust of these efforts exploits the synergistic relationship between SAR and MTI radar. Used together, they offer comprehensive coverage of the battlefield  相似文献   
6.
The CEPPAD Imaging Proton Spectrometer on the POLAR spacecraft has proven to perform very well as an Energetic Neutral (ENA) atom imager, despite the fact that it was designed primarily for measuring energetic ions in-situ. ENAs emitted from the ring current can be detected during storm- as well as quiet-time conditions and can be monitored continuously for many hours at a time when Polar is situated in the polar cap. In addition, we are able to routinely detect ‘bursts’ of ENA emissions in response to substorm-associated ion injections. In this paper, we present ENA images of a single such event together with global auroral imager data from the POLAR VIS instrument. LANL geosynchronous energetic particle data, and ground magnetic Pi2 data in order to establish that such bursts are indeed caused by substorm injections.  相似文献   
7.
Chiu  Y. T.  Cornwall  J. M.  Fennell  J. F.  Gorney  D. J.  Mizera  P. F. 《Space Science Reviews》1983,35(3):211-257
Space Science Reviews - Observations and theoretical interpretations of auroral plasma distributions have led to a spectacular advance, in the latter part of the 1970's, in understanding the...  相似文献   
8.
The RAPID spectrometer (Research with Adaptive Particle Imaging Detectors) for the Cluster mission is an advanced particle detector for the analysis of suprathermal plasma distributions in the energy range from 20–400 keV for electrons, 40 keV–1500 keV (4000 keV) for hydrogen, and 10 keV nucl-1–1500 keV (4000 keV) for heavier ions. Novel detector concepts in combination with pin-hole acceptance allow the measurement of angular distributions over a range of 180° in polar angle for either species. Identification of the ionic component (particle mass A) is based on a two-dimensional analysis of the particle's velocity and energy. Electrons are identified by the well-known energy-range relationship. Details of the detection techniques and in-orbit operations are described. Scientific objectives of this investigation are highlighted by the discussion of selected critical issues in geospace.  相似文献   
9.
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号