首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
航空   6篇
航天技术   1篇
航天   2篇
  2021年   1篇
  2012年   2篇
  2009年   5篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
We present grid-adaptive numerical simulations of magnetized plasma jets, modeled by means of the compressible magnetohydrodynamic equations. The Adaptive Mesh Refinement strategy makes it possible to investigate long-term jet dynamics where both large-scale and small-scale effects are at play. We extend recent findings for uniformly magnetized, periodic shear layers to planar and fully 3D extended jet segments. The jet lengths cover multiple, typically 10, axial wavelengths of the fastest growing Kelvin–Helmholtz (KH) like modes. The dominant linear MHD instabilities of the jet flows are quantified by means of MHD spectroscopic analysis. In cases characterized by sonic Mach numbers about unity and large plasma beta values, both single and double shear layers (planar jets) manifest self-organizing trends to large scales, e.g. by continuous pairing/merging between co-rotating vortices, simultaneously with the introduction of small-scale features by magnetic reconnection events. The vortices form as a result of KH unstable shear-flow layers, and their coalescence arises from the growth of subharmonic modes at multiple wavelengths of the fastest growing KH instability. In extended two-dimensional jet segments, we investigate how varying jet width alters this coalescence process occurring at both edges, e.g. by introducing Batchelor-like coupling between counter-rotating vortices formed at opposing weakly magnetized, close shear layers. Finally, periodic segments of supersonic magnetized jets are simulated in two- and three-dimensional cases, which are characterized by violent shock-dominated transients.  相似文献   
3.
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.  相似文献   
4.
Plasmaspheric density structures have been studied since the discovery of the plasmasphere in the late 1950s. But the advent of the Cluster and Image missions in 2000 has added substantially to our knowledge of density structures, thanks to the new capabilities of those missions: global imaging with Image and four-point in situ measurements with Cluster. The study of plasma sources and losses has given new results on refilling rates and erosion processes. Two-dimensional density images of the plasmasphere have been obtained. The spatial gradient of plasmaspheric density has been computed. The ratios between H+, He+ and O+ have been deduced from different ion measurements. Plasmaspheric plumes have been studied in detail with new tools, which provide information on their morphology, dynamics and occurrence. Density structures at smaller scales have been revealed with those missions, structures that could not be clearly distinguished before the global images from Image and the four-point measurements by Cluster became available. New terms have been given to these structures, like “shoulders”, “channels”, “fingers” and “crenulations”. This paper reviews the most relevant new results about the plasmaspheric plasma obtained since the start of the Cluster and Image missions.  相似文献   
5.
Ground-based instruments and a number of space missions have contributed to our knowledge of the plasmasphere since its discovery half a century ago, but it is fair to say that many questions have remained unanswered. Recently, NASA’s Image and ESA’s Cluster probes have introduced new observational concepts, thereby providing a non-local view of the plasmasphere. Image carried an extreme ultraviolet imager producing global pictures of the plasmasphere. Its instrumentation also included a radio sounder for remotely sensing the spacecraft environment. The Cluster mission provides observations at four nearby points as the four-spacecraft configuration crosses the outer plasmasphere on every perigee pass, thereby giving an idea of field and plasma gradients and of electric current density. This paper starts with a historical overview of classical single-spacecraft data interpretation, discusses the non-local nature of the Image and Cluster measurements, and emphasizes the importance of the new data interpretation tools that have been developed to extract non-local information from these observations. The paper reviews these innovative techniques and highlights some of them to give an idea of the flavor of these methods. In doing so, it is shown how the non-local perspective opens new avenues for plasmaspheric research.  相似文献   
6.
In the context of the ESA Climate Change Initiative project, a new coastal sea level altimetry product has been developed in order to support advances in coastal sea level variability studies. Measurements from Jason-1,2&3 missions have been retracked with the Adaptive Leading Edge Subwaveform (ALES) Retracker and then ingested in the X-TRACK software with the best possible set of altimetry corrections. These two coastal altimetry processing approaches, previously successfully validated and applied to coastal sea level research, are combined here for the first time in order to derive a 16-year-long (June 2002 to May 2018), high-resolution (20-Hz), along-track sea level dataset in six regions: Northeast Atlantic, Mediterranean Sea, West Africa, North Indian Ocean, Southeast Asia and Australia. The study demonstrates that this new coastal sea level product called X-TRACK/ALES is able to extend the spatial coverage of sea level altimetry data ~3.5 km in the land direction, when compared to the X-TRACK 1-Hz dataset. We also observe a large improvement in coastal sea level data availability from Jason-1 to Jason-3, with data at 3.6 km, 1.9 km and 0.9 km to the coast on average, for Jason-1, Jason-2 and Jason-3, respectively. When combining measurements from Jason-1 to Jason-3, we reach a distance of 1.2–4 km to the coast. When compared to tide gauge data, the accuracy of the new altimetry near-shore sea level estimations also improves. In terms of correlations with a large set of independent tide gauge observations selected in the six regions, we obtain an average value of 0.77. We also show that it is now possible to derive from the X-TRACK/ALES product an estimation of the ocean current variability up to 5 km to the coast. This new altimetry dataset, freely available, will provide a valuable contribution of altimetry in coastal marine research community.  相似文献   
7.
The electric field and magnetic field are basic quantities in the plasmasphere measured since the 1960s. In this review, we first recall conventional wisdom and remaining problems from ground-based whistler measurements. Then we show scientific results from Cluster and Image, which are specifically made possible by newly introduced features on these spacecraft, as follows. 1. In situ electric field measurements using artificial electron beams are successfully used to identify electric fields originating from various sources. 2. Global electric fields are derived from sequences of plasmaspheric images, revealing how the inner magnetospheric electric field responds to the southward interplanetary magnetic fields and storms/substorms. 3. Understanding of sub-auroral polarization stream (SAPS) or sub-auroral ion drifts (SAID) are advanced through analysis of a combination of magnetospheric and ionospheric measurements from Cluster, Image, and DMSP. 4. Data from multiple spacecraft have been used to estimate magnetic gradients for the first time.  相似文献   
8.
The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150?h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.  相似文献   
9.
This paper highlights significant advances in plasmaspheric wave research with Cluster and Image observations. This leap forward was made possible thanks to the new observational capabilities of these space missions. On one hand, the multipoint view of the four Cluster satellites, a unique capability, has enabled the estimation of wave characteristics impossible to derive from single spacecraft measurements. On the other hand, the Image experiments have enabled to relate large-scale plasmaspheric density structures with wave observations and provide radio soundings of the plasmasphere with unprecedented details. After a brief introduction on Cluster and Image wave instrumentation, a series of sections, each dedicated to a specific type of plasmaspheric wave, put into context the recent advances obtained by these two revolutionary missions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号