首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航空   3篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Online INS/GPS integration with a radial basis function neural network   总被引:1,自引:0,他引:1  
Most of the present navigation systems rely on Kalman filtering to fuse data from global positioning system (GPS) and the inertial navigation system (INS). In general, INS/GPS integration provides reliable navigation solutions by overcoming each of their shortcomings, including signal blockage for GPS and growth of position errors with time for INS. Present Kalman filtering INS/GPS integration techniques have some inadequacies related to the stochastic error models of inertial sensors, immunity to noise, and observability. This paper aims to introduce a multi-sensor system integration approach for fusing data from INS and GPS utilizing artificial neural networks (ANN). A multi-layer perceptron ANN has been recently suggested to fuse data from INS and differential GPS (DGPS). Although being able to improve the positioning accuracy, the complexity associated with both the architecture of multi-layer perceptron networks and its online training algorithms limit the real-time capabilities of this technique. This article, therefore, suggests the use of an alternative ANN architecture. This architecture is based on radial basis function (RBF) neural networks, which generally have simpler architecture and faster training procedures than multi-layer perceptron networks. The INS and GPS data are first processed using wavelet multi-resolution analysis (WRMA) before being applied to the RBF network. The WMRA is used to compare the INS and GPS position outputs at different resolution levels. The RBF-ANN module is then trained to predict the INS position errors and provide accurate positioning of the moving platform. Field-test results have demonstrated that substantial improvement in INS/GPS positioning accuracy could be obtained by applying the combined WRMA and RBF-ANN modules.  相似文献   
2.
Wavelet de-noising for IMU alignment   总被引:2,自引:0,他引:2  
Inertial navigation system (INS) is presently used in several applications related to aerospace systems and land vehicle navigation. An INS determines the position, velocity, and attitude of a moving platform by processing the accelerations and angular velocity measurements of an inertial measurement unit (IMU). Accurate estimation of the initial attitude angles of an IMU is essential to ensure precise determination of the position and attitude of the moving platform. These initial attitude angles are usually estimated using alignment techniques. Due to the relatively low signal-to-noise ratio of the sensor measurement (especially for the gyroscopes), the initial attitude angles may not be computed accurately enough. In addition, the estimated initial attitude angles may have relatively large uncertainties that may affect the accuracy of other navigation parameters. This article suggests processing the gyro and accelerometer measurements with multiple levels of wavelet decomposition to remove the high frequency noise components. The proposed wavelet de-noising method was applied on a navigational grade inertial measurement unit (LTN90-100). The results showed that accurate alignment procedure and fast convergence of the estimation algorithm, in addition to reducing the estimation covariance of the three attitude angles, could be obtained.  相似文献   
3.
This article exploits the idea of developing an alternative data fusion scheme that integrates the outputs of low-cost micro-electro-mechanical systems (MEMS) inertial measurements units (IMUs) and receivers of the global positioning system (GPS). The proposed scheme is implemented using a constructive neural network (cascade-correlation network (CCNs)) to overcome the limitations of conventional techniques that are predominantly based on the Kalman filter (KF). The CNN applied in this research has the advantage of having a flexible topology if compared with the recently utilized multi-layer feed-forward neural networks (MFNNs) for inertial navigation system (INS)/GPS integration. The preliminary results presented in this article illustrate the effectiveness of proposed CCNs over both MFNN-based and Kalman filtering techniques for INS/GPS integration.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号