首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   6篇
航天技术   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
A century has elapsed since the first observation of the polarimetric profile of a line of the solar spectrum. Since then, dramatic progress has been made in the instrumentation, which is now reaching unprecedented levels of sensitivity in the measurement of polarization signals in solar spectral lines. At the same time, the theoretical framework needed for the interpretation of polarimetric observations has steadily evolved from the pioneering methods, based on simple formulae, to the sophisticated structure that is nowadays used with success in the interpretation of solar observations. The present paper is intended to give a historical perspective of the evolution of this research field and of its major achievements, with particular emphasis on the role played by the magnetic field in determining the polarimetric shapes of spectral lines.  相似文献   
2.
3.
4.
The Jupiter Energetic Particle Detector Instruments (JEDI) on the Juno Jupiter polar-orbiting, atmosphere-skimming, mission to Jupiter will coordinate with the several other space physics instruments on the Juno spacecraft to characterize and understand the space environment of Jupiter’s polar regions, and specifically to understand the generation of Jupiter’s powerful aurora. JEDI comprises 3 nearly-identical instruments and measures at minimum the energy, angle, and ion composition distributions of ions with energies from H:20 keV and O: 50 keV to >1 MeV, and the energy and angle distribution of electrons from <40 to >500 keV. Each JEDI instrument uses microchannel plates (MCP) and thin foils to measure the times of flight (TOF) of incoming ions and the pulse height associated with the interaction of ions with the foils, and it uses solid state detectors (SSD’s) to measure the total energy (E) of both the ions and the electrons. The MCP anodes and the SSD arrays are configured to determine the directions of arrivals of the incoming charged particles. The instruments also use fast triple coincidence and optimum shielding to suppress penetrating background radiation and incoming UV foreground. Here we describe the science objectives of JEDI, the science and measurement requirements, the challenges that the JEDI team had in meeting these requirements, the design and operation of the JEDI instruments, their calibrated performances, the JEDI inflight and ground operations, and the initial measurements of the JEDI instruments in interplanetary space following the Juno launch on 5 August 2011. Juno will begin its prime science operations, comprising 32 orbits with dimensions 1.1×40 RJ, in mid-2016.  相似文献   
5.
The LOng-Range Reconnaissance Imager (LORRI) is the high-resolution imaging instrument for the New Horizons mission to Pluto, its giant satellite Charon, its small moons Nix and Hydra, and the Kuiper Belt, which is the vast region of icy bodies extending roughly from Neptune’s orbit out to 50 astronomical units (AU). New Horizons launched on January 19, 2006, as the inaugural mission in NASA’s New Frontiers program. LORRI is a narrow-angle (field of view=0.29°), high-resolution (4.95 μrad pixels), Ritchey-Chrétien telescope with a 20.8-cm diameter primary mirror, a focal length of 263 cm, and a three-lens, field-flattening assembly. A 1,024×1,024 pixel (optically active region), thinned, backside-illuminated charge-coupled device (CCD) detector is used in the focal plane unit and is operated in frame-transfer mode. LORRI provides panchromatic imaging over a bandpass that extends approximately from 350 nm to 850 nm. LORRI operates in an extreme thermal environment, situated inside the warm spacecraft with a large, open aperture viewing cold space. LORRI has a silicon carbide optical system, designed to maintain focus over the operating temperature range without a focus adjustment mechanism. Moreover, the spacecraft is thruster-stabilized without reaction wheels, placing stringent limits on the available exposure time and the optical throughput needed to satisfy the measurement requirements.  相似文献   
6.
7.
NASA’s MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission will further the understanding of the formation of the planets by examining the least studied of the terrestrial planets, Mercury. During the one-year orbital phase (beginning in 2011) and three earlier flybys (2008 and 2009), the X-Ray Spectrometer (XRS) onboard the MESSENGER spacecraft will measure the surface elemental composition. XRS will measure the characteristic X-ray emissions induced on the surface of Mercury by the incident solar flux. The Kα lines for the elements Mg, Al, Si, S, Ca, Ti, and Fe will be detected. The 12° field-of-view of the instrument will allow a spatial resolution that ranges from 42 km at periapsis to 3200 km at apoapsis due to the spacecraft’s highly elliptical orbit. XRS will provide elemental composition measurements covering the majority of Mercury’s surface, as well as potential high-spatial-resolution measurements of features of interest. This paper summarizes XRS’s science objectives, technical design, calibration, and mission observation strategy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号