首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  国内免费   1篇
航空   13篇
航天技术   3篇
航天   1篇
  2020年   1篇
  2014年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1996年   2篇
  1992年   1篇
  1991年   1篇
  1983年   1篇
排序方式: 共有17条查询结果,搜索用时 93 毫秒
1.
The Galileo Dust Detector is intended to provide direct observations of dust grains with masses between 10-19 and 10-9 kg in interplanetary space and in the Jovian system, to investigate their physical and dynamical properties as functions of the distances to the Sun, to Jupiter and to its satellites, to study its interaction with the Galilean satellites and the Jovian magnetosphere. Surface phenomena of the satellites (like albedo variations), which might be effects of meteoroid impacts will be compared with the dust environment. Electric charges of particulate matter in the magnetosphere and its consequences will be studied; e.g., the effects of the magnetic field on the trajectories of dust particles and fragmentation of particles due to electrostatic disruption. The investigation is performed with an instrument that measures the mass, speed, flight direction and electric charge of individual dust particles. It is a multicoincidence detector with a mass sensitivity 106 times higher than that of previous in-situ experiments which measured dust in the outer solar system. The instrument weighs 4.2 kg, consumes 2.4 W, and has a normal data transmission rate of 24 bits s-1 in nominal spacecraft tracking mode. On December 29, 1989 the instrument was switched-on. After the instrument had been configured to flight conditions cruise science data collection started immediately. In the period to May 18, 1990 at least 168 dust impacts have been recorded. For 81 of these dust grains masses and impact speeds have been determined. First flux values are given.  相似文献   
2.
The responses of a piezoelectric lead zirconate titanate (PZT) element to hypervelocity collisions were experimentally studied. In this study, the particles of masses ranging from 0.3 to 10 fg were made to collide with PZT at velocities between 20 and 96 km/s. The amplitude and the corresponding rise time of the single-pulse output signals that were produced in the piezoelectric PZT element were measured to determine the possible collision states. The results revealed an apparently multimodal output; three classes were assumed to be involved in the pulse formation mechanism. The amplitude and rise time were sensitive to the collision velocity. The multimodal behavior implied that the PZT-based cosmic dust detectors should be calibrated according to the class they belong to.  相似文献   
3.
随着复合材料构件被广泛地应用于航空、航天和船舶等各个领域,这些复合材料构件的安全对产品质量起到关键的作用,具有重要的经济价值。无论是制造过程还是维修过程,都需要对复合材料构件进行快速的缺陷检测。剪切成像技术是一种高效的、全方位缺陷检测技术,并被广泛地认为是针对现代复合材料构件的可靠的检测技术。本文将介绍剪切成像技术最新的发展动态和软件技术,并概述其应用潜力。  相似文献   
4.
基于左手材料的翼面隐身结构设计及优化   总被引:1,自引:0,他引:1  
徐含乐  祝小平  周洲  任武 《航空学报》2014,35(12):3331-3340
翼面隐身结构能同时满足飞行器机翼气动、结构和隐身的要求,但在空间有限的机翼中应用时,由于结构特点使其隐身效果受到限制。为了解决该问题,在传统隐身结构中加入左手材料(LHM)进行改进。首先选取一种典型的LHM,从隐身设计角度出发,利用其雷达散射截面(RCS)计算不同入射角度下的后向吸收率,对其电磁特性进行研究。然后根据LHM的电磁特性,将其应用于翼面隐身结构,在相同的RCS减缩效果下,应用LHM可有效降低隐身结构体积。最后,为了进一步提高隐身效果,提出一种夹芯型LHM翼面隐身结构,并对该隐身结构中的结构参数利用代理模型进行优化。研究结果表明,相较金属翼面段RCS降低了15dB以上,较相同结构的翼面隐身结构RCS降低了10dB以上。  相似文献   
5.
Space Science Reviews - In this chapter, we review the contribution of space missions to the determination of the elemental and isotopic composition of Earth, Moon and the terrestrial planets, with...  相似文献   
6.
One of the highest-priority issues for a future human or robotic lunar exploration is the lunar dust. This problem should be studied in depth in order to develop an environment model for a future lunar exploration. A future ESA lunar lander mission requires the measurement of dust transport phenomena above the lunar surface. Here, we describe an instrument design concept to measure slow and fast moving charged lunar dust which is based on the principle of charge induction. LDX has a low mass and measures the speed and trajectory of individual dust particles with sizes below one micrometer. Furthermore, LDX has an impact ionization target to monitor the interplanetary dust background. The sensor consists of three planes of segmented grid electrodes and each electrode is connected to an individual charge sensitive amplifier. Numerical signals were computed using the Coulomb software package. The LDX sensitive area is approximately 400 cm2. Our simulations reveal trajectory uncertainties of better than 2° with an absolute position accuracy of better than 2 mm.  相似文献   
7.
Interstellar dust was first identified by the dust sensor onboard Ulysses after the Jupiter flyby in February 1992. These findings were confirmed by the Galileo experiment on its outbound orbit from Earth to Jupiter. Although modeling results show that interstellar dust is also present at the Earth orbit, a direct identification of interstellar grains from geometrical arguments is only possible outside of 2.5 AU. The flux of interstellar dust with masses greater than 6 · 10–14 g is about 1 · 10–4 m –2 s –1 at ecliptic latitudes and at heliocentric distances greater than 1AU. The mean mass of the interstellar particles is 3 · 10–13 g. The flux arrives from a direction which is compatible with the influx direction of the interstellar neutral Helium of 252° longitude and 5.2° latitude but it may deviate from this direction by 15 – 20°.  相似文献   
8.
9.
Srivastava et al. (2009) presented Rayleigh scattering cross-sections and optical depths for Earth’s atmosphere that are approximately 3% smaller than previously accepted. Their analysis was based on quantum-mechanical theory for anisotropic scattering in the Cabannes line published in papers that seem to have introduced some confusion about determining the anisotropy and King factors. This comment clarifies these factors and shows that including the frequency-shifted rotational Raman lines gives the traditional King factor and the correct Rayleigh scattering for the optical depth.  相似文献   
10.
We review the current knowledge and understanding of dust in the inner solar system. The major sources of the dust population in the inner solar system are comets and asteroids, but the relative contributions of these sources are not quantified. The production processes inward from 1 AU are: Poynting-Robertson deceleration of particles outside of 1 AU, fragmentation into dust due to particle-particle collisions, and direct dust production from comets. The loss processes are: dust collisional fragmentation, sublimation, radiation pressure acceleration, sputtering, and rotational bursting. These loss processes as well as dust surface processes release dust compounds in the ambient interplanetary medium. Between 1 and 0.1 AU the dust number densities and fluxes can be described by inward extrapolation of 1 AU measurements, assuming radial dependences that describe particles in close to circular orbits. Observations have confirmed the general accuracy of these assumptions for regions within 30° latitude of the ecliptic plane. The dust densities are considerably lower above the solar poles but Lorentz forces can lift particles of sizes < 5 μm to high latitudes and produce a random distribution of small grains that varies with the solar magnetic field. Also long-period comets are a source of out-of-ecliptic particles. Under present conditions no prominent dust ring exists near the Sun. We discuss the recent observations of sungrazing comets. Future in-situ experiments should measure the complex dynamics of small dust particles, identify the contribution of cometary dust to the inner-solar-system dust cloud, and determine dust interactions in the ambient interplanetary medium. The combination of in-situ dust measurements with particle and field measurements is recommended.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号