首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
航空   7篇
  2018年   5篇
  2017年   2篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
The Juno Radiation Monitoring (RM) Investigation   总被引:1,自引:0,他引:1  
The Radiation Monitoring Investigation of the Juno Mission will actively retrieve and analyze the noise signatures from penetrating radiation in the images of Juno’s star cameras and science instruments at Jupiter. The investigation’s objective is to profile Jupiter’s \(>10\mbox{-MeV}\) electron environment in regions of the Jovian magnetosphere which today are still largely unexplored. This paper discusses the primary instruments on Juno which contribute to the investigation’s data suite, the measurements of camera noise from penetrating particles, spectral sensitivities and measurement ranges of the instruments, calibrations performed prior to Juno’s first science orbit, and how the measurements may be used to infer the external relativistic electron environment.  相似文献   
2.
Aymeric Spiga  Don Banfield  Nicholas A. Teanby  François Forget  Antoine Lucas  Balthasar Kenda  Jose Antonio Rodriguez Manfredi  Rudolf Widmer-Schnidrig  Naomi Murdoch  Mark T. Lemmon  Raphaël F. Garcia  Léo Martire  Özgür Karatekin  Sébastien Le Maistre  Bart Van Hove  Véronique Dehant  Philippe Lognonné  Nils Mueller  Ralph Lorenz  David Mimoun  Sébastien Rodriguez  Éric Beucler  Ingrid Daubar  Matthew P. Golombek  Tanguy Bertrand  Yasuhiro Nishikawa  Ehouarn Millour  Lucie Rolland  Quentin Brissaud  Taichi Kawamura  Antoine Mocquet  Roland Martin  John Clinton  Éléonore Stutzmann  Tilman Spohn  Suzanne Smrekar  William B. Banerdt 《Space Science Reviews》2018,214(7):109
In November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars.  相似文献   
3.
Meteor impacts and/or meteor events generate body and surface seismic waves on the surface of a planet. When meteoroids burst in the atmosphere, they generate shock waves that subsequently convert into acoustic waves in the atmosphere and seismic waves in the ground. This effect can be modeled as the amplitude of Rayleigh and other Spheroidal modes excitation, due to atmospheric/ground coupling effects.First, an inversion of the seismic source of Chelyabinsk superbolide is performed. We develop an approach in order to model a line source in the atmosphere, corresponding to the consecutive generation of shock waves by the interaction with the atmosphere. The model is based on the known trajectory. We calculate the synthetic seismograms of Rayleigh waves associated with the event by the summation of normal modes of a model of the solid part and the atmosphere of the planet. Through an inversion technique based on singular value decomposition, we perform a full Rayleigh wave inversion and we provide solutions for the moment magnitude.SEIS will likely detect seismic waves generated by impacts and the later might be further located by remote sensing differential processing. In the case of Mars, we use the same method to obtain waveforms associated with impacts on the planetary surface or in low altitudes in the Martian atmosphere. We show that the contribution of the fundamental spheroidal solid mode is dominating the waveforms, compared to that of the first two overtones. We perform an amplitude comparison and we show that small impactors (diameter of 0.5 to 2 m), can be detected by the SEIS VBB seismometer of InSight mission, even in short epicentral distances, in the higher frequencies of the Rayleigh waves. We perform an analysis based on impact rate estimations and we calculate the number of detectable events of 1 meter diameter meteor impacts to be 6.7 to 13.4 per 1 Martian year for a \(Q=500\).  相似文献   
4.
Clinton  J.  Giardini  D.  Böse  M.  Ceylan  S.  van Driel  M.  Euchner  F.  Garcia  R. F.  Kedar  S.  Khan  A.  Stähler  S. C.  Banerdt  B.  Lognonne  P.  Beucler  E.  Daubar  I.  Drilleau  M.  Golombek  M.  Kawamura  T.  Knapmeyer  M.  Knapmeyer-Endrun  B.  Mimoun  D.  Mocquet  A.  Panning  M.  Perrin  C.  Teanby  N. A. 《Space Science Reviews》2018,214(8):1-51
Space Science Reviews - In recent decades, volcanic and cryovolcanic activity on moons within the Solar System has been recognised as an important source of cosmic dust. Two moons, Jupiter’s...  相似文献   
5.
Although not the prime focus of the InSight mission, the near-surface geology and physical properties investigations provide critical information for both placing the instruments (seismometer and heat flow probe with mole) on the surface and for understanding the nature of the shallow subsurface and its effect on recorded seismic waves. Two color cameras on the lander will obtain multiple stereo images of the surface and its interaction with the spacecraft. Images will be used to identify the geologic materials and features present, quantify their areal coverage, help determine the basic geologic evolution of the area, and provide ground truth for orbital remote sensing data. A radiometer will measure the hourly temperature of the surface in two spots, which will determine the thermal inertia of the surface materials present and their particle size and/or cohesion. Continuous measurements of wind speed and direction offer a unique opportunity to correlate dust devils and high winds with eolian changes imaged at the surface and to determine the threshold friction wind stress for grain motion on Mars. During the first two weeks after landing, these investigations will support the selection of instrument placement locations that are relatively smooth, flat, free of small rocks and load bearing. Soil mechanics parameters and elastic properties of near surface materials will be determined from mole penetration and thermal conductivity measurements from the surface to 3–5 m depth, the measurement of seismic waves during mole hammering, passive monitoring of seismic waves, and experiments with the arm and scoop of the lander (indentations, scraping and trenching). These investigations will determine and test the presence and mechanical properties of the expected 3–17 m thick fragmented regolith (and underlying fractured material) built up by impact and eolian processes on top of Hesperian lava flows and determine its seismic properties for the seismic investigation of Mars’ interior.  相似文献   
6.
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be \(\geq3\mbox{--}5~\mbox{m}\) thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.  相似文献   
7.
Stevanović  J.  Teanby  N. A.  Wookey  J.  Selby  N.  Daubar  I. J.  Vaubaillon  J.  Garcia  R. 《Space Science Reviews》2017,211(1-4):525-545
Space Science Reviews - In 2018, NASA will launch InSight, a single-station suite of geophysical instruments, designed to characterise the martian interior. We investigate the seismo-acoustic...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号