首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
航空   2篇
航天技术   2篇
航天   1篇
  2011年   2篇
  2008年   1篇
  1980年   1篇
  1966年   1篇
排序方式: 共有5条查询结果,搜索用时 46 毫秒
1
1.
The RF SRC—Institute of Biomedical Problems, Russian Academy of Sciences, developed Biorisk hardware to study the effects of long-term exposure of dormant forms of various organisms to outer space and used it to complete a series of experiments on the Russian Module (RM) of the International Space Station (ISS).The experiments were performed using prokaryotes (Bacillus bacteria) and eukaryotes (Penicillium, Aspergillus, and Cladosporium fungi), as well as spores, dormant forms of higher plants, insects, lower crustaceans, and vertebrates. The biological samples were housed in two containers that were exposed to outer space for 13 or 18 months. The results of the 18-month experiment showed that, in spite of harsher temperature than in the first study, most specimens remained viable.These experiments provided evidence that not only bacterial and fungal spores but also dormant forms of organisms that reached higher levels of evolutionary development had the capability to survive a long-term exposure to outer space. This observation suggests that they can be transferred on outer walls of space platforms during interplanetary missions.  相似文献   
2.
Barley seeds were exposed to outer space for 13 months in a vented metal container without a climate control system to assess the risk of physiological and genetic mutation during long-term storage in space. The space-stored seeds (S0 generation), with an 82% germination rate in 50 seeds, lost about 20% of their weight after the exposure. The germinated seeds showed normal growth, heading, and ripening. The harvested seeds (S1 generation) also germinated and reproduced (S2 generation) as did the ground-stored seeds. The culm length, ear length, number of seed, grain weight, and fertility of the plants from the space-stored seeds were not significantly different from those of the ground-stored seeds in each of the S0 and S1 generation. Furthermore, the S1 and S2 space-stored seeds respectively showed similar β-glucan content to those of the ground-stored seeds. Amplified fragment length polymorphism analysis with 16 primer combinations showed no specific fragment that appears or disappears significantly in the DNA isolated from the barley grown from the space-stored seeds. Though these data are derived from nine S0 space-stored seeds in a single exposure experiment, the results demonstrate the preservation of barley seeds in outer space for 13 months without phenotypic or genotypic changes and with healthy and vigorous growth in space.  相似文献   
3.
Present status of the theories for presupernova evolution and triggering mechanisms of supernova explosions are summarized and discussed from the standpoint of the theory of stellar structure and evolution. It is not intended to collect every detail of numerical results thus far obtained, but to extract physically clear-cut understanding from complexities of the numerical stellar models. For this purpose the evolution of stellar cores is discussed in a generalized fashion. The following types of the supernova explosions are discussed. The carbon deflagration supernova of intermediate mass star which results in the total disruption of the star. Massive star evolves into a supernova triggered by photo-dissociation of iron nuclei which results in a formation of a neutron star or a black hole depending on its mass. These two are typical types of the sueprnovae. Between them there remains a range of mass for which collapse of the stellar core is triggered by electron captures, which has been recently shown to leave a neutron star despite oxygen deflagration competing with the electron captures. Also discussed are combustion and detonation of helium or carbon which take place in accreting white dwarfs, and the collapse which is triggered by electron-pair creation in very massive stars.Appendix: Notations A mass number of atomic nucleus - B v(a, b) incomplete beta function - c p specific heat at constant pressure - c p sound velocity - c(sub) center of the star - E e mean energy of an electron captured by nucleus - E n nuclear energy release from unit mass of the nuclear fuel specified by n - E thr threshold energy (9.3) - E thr,0 energy difference between the ground states of daughter nucleus and parent nucleus (9.1) - E energy of gamma ray emitted from daughter nucleus (9.1) - E v mean energy of a neutrino emitted by electron capture (9.1) - f flatness parameter (2.17) - g local gravitational acceleration (2.16) - H atomic mass unit - H p scale height of pressure (2.22) - H (sub) hydrogen-burning shell - k Boltzmann constant - l mixing length of convection - L cr(M r ) local Eddington's critical luminosity (4.3) - L n integrated nuclear energy generation rate by nuclear fuel specified by n - L v neutrino luminosity - L v, cr(M r ) local Eddington's critical neutrino luminosity (11.2) - M (current) mass of a star - m M core mass contained interior to the carbon-burning shell - M Ch Chandrasekhar's limiting mass (9.6) - M H core mass contained interior to the hydrogen-burning shell - M He core mass contained interior to the helium-burning shell - M ms mass of a star at its zero-age min-sequence - M O core mass contained interior to the oxygen-burning shell - M r mass contained interior to a shell at r - M Si core mass contained interior to the silicon-burning shell - M WD mass of white dwarf (7.1) - M 0 normalization factor to the non-dimensional mass (3.3) - M 1 core mass (3.6) - N polytropic index between pressure and density (2.3) - n polytropic index between pressure and temperature (10.1) - N A Avogadro number - N ad adiabatic polytropic index - N e number of electrons in unit mass of matter - NSE nuclear statistical equilibrium - P pressure - ph (sub) photosphere - Q e mass fraction of the envelope exterior of the shell e (2.14) - R stellar radius - r radial distance of a shell - r 0 normalization factor to the non-dimensional radius (3.2) - s specific entropy - S i specific entropy of ions - T temperature - U homology invariant defined by (2.1) - u gas specific internal energy of gas - u rad energy of the radiation field per volume in which unit mass of gas is contained (6.4) - V homology invariant defined by (2.2) - def velocity of deflagration front (6.10) - X concentration by weight of hydrogen - Y concentration by weight of helium - Y e mole number of electrons in one gram of matter (9.7) - Y v mole number of neutrinos in one gram of matter - Z concentration by weight of the elements other than hydrogen and helium - z shock strength (6.6) - 1 (sub) usually denotes the core edge (2.13) - ratio of the mixing length to the scale height of pressure (l/H p ) - ratio of gas pressure to the total pressure - ratio of the specific heats - gD locus of singularity in U-V plane (2.5) - M(H p ) mass contained within unit scale height of pressure (4.4) - ec energy rate by electron captures (9.5) - n nuclear energy generation rate by the nuclear fuel specified by n - v neutrino loss rate - L v (D) neutrino loss rate excluding the neutrinos from the electron captures (9.4) - non-dimensional density (3.1) - P/, not the non-dimensional temperature (2.7) - W Weinberg's angle (5.8) - opacity - v neutrino opacity (11.2) - describes the effect of electron degeneracy in equation of state (2.19) - ec rate of electron capture - mean molecular weight - e mean molecular weight of electrons - e chemical potential of an electron excluding the rest mass (8.1) - i mean molecular weight of ions - non-dimensional radius (3.1) - non-dimensional pressure (3.1) - matter density - cr GR critical density above which the general relativistic instability sets in - cr critical density for reimplosion of the core by beta processes (Section 5) - ign density at the ignition - nse density above which the deflagrated matter results in NSE composition - e non-dimensional entropy of electron-per one electron in units of k(9.2) - ff timescale of free fall (6.2) - h (H p ) timescale of heat transport over unit scale height of pressure (4.4) - n nuclear timescale for a change in temperature (6.1) - non-dimensional mass (3.1) - e chemical potential of an electron in units of kT (8.1)  相似文献   
4.
We report the first results of ground-based millimeter-wave measurements of 183 GHz atmospheric water vapor spectra from Atacama highland (4800 m alt.), Chile. The measurements were carried out in December 2005 by using a spectroscopic radiometer equipped with a superconductive heterodyne receiver. A conspicuous H2O spectrum at 183 GHz was detected with an integration time of only 1.5 min, and this is the first high frequency-resolution H2O spectrum at 183 GHz obtained in the southern subtropical region. The vertical profile of H2O volume mixing ratio between 40 and 64 km were retrieved from the spectrum by using the modified optimal estimation method.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号