首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航空   2篇
  2018年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
We find the forms of the orbits in a self-consistent galactic model generated by a N-body simulation of the collapse of a protogalaxy. The model represents a stationary elliptical galaxy of type E5, which is approximately axisymmetric around its longest axis. The orbits are of three main types, box orbits (including box-like orbits), tube orbits and chaotic orbits. The box or box-like and tube orbits are represented by closed invariant curves on a Poincaré surface of section. The forms of the orbits and of the invariant curves can be explained by a third integral of motion I, that is given by the Giorgilli (1979) computer program. The nonresonant form of the third integral explains the box orbits, while a resonant form of this integral explains both the box orbits and the 1:1 tube orbits. The N-body model gives the distribution of velocities F, which is an exponential of the third integral.  相似文献   
2.
Seven different models are applied to the same problem of simulating the Sun’s coronal magnetic field during the solar eclipse on 2015 March 20. All of the models are non-potential, allowing for free magnetic energy, but the associated electric currents are developed in significantly different ways. This is not a direct comparison of the coronal modelling techniques, in that the different models also use different photospheric boundary conditions, reflecting the range of approaches currently used in the community. Despite the significant differences, the results show broad agreement in the overall magnetic topology. Among those models with significant volume currents in much of the corona, there is general agreement that the ratio of total to potential magnetic energy should be approximately 1.4. However, there are significant differences in the electric current distributions; while static extrapolations are best able to reproduce active regions, they are unable to recover sheared magnetic fields in filament channels using currently available vector magnetogram data. By contrast, time-evolving simulations can recover the filament channel fields at the expense of not matching the observed vector magnetic fields within active regions. We suggest that, at present, the best approach may be a hybrid model using static extrapolations but with additional energization informed by simplified evolution models. This is demonstrated by one of the models.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号