首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   2篇
航天技术   2篇
  2004年   1篇
  2002年   1篇
  1996年   1篇
  1982年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The inventory of large often non-homogeneous tracts of land by resource agencies has led to the development of estimation methods and sampling strategies that produce estimates of the aereal extent of various features from ‘limited’ observations of the universe of interest. Landsat data has furnished a tool that allows for potential improvement in estimates of resource parameters over extensive areas. This paper examines the methodology and results of a procedure which uses an economical sampling procedure allied with the large area covering qualities of the satellite imaging system to make improved estimates of irrigated land in a more timely, efficient and ‘accurate’ manner.  相似文献   
2.
Dust rings have been observed around each of the giant planets and may also exist around Mars. The particles comprising these rings have short lifetimes due to a number of processes including exospheric and plasma drag, Poynting-Robertson drag, sputtering, collision with other circumplanetary particles, and the Lorentz force for charged grains. The supply of dust is maintained by collisions between macroscopic ring particles and bombardment of moons and ring particles by interplanetary impactors. All of the processes that act to remove or alter the circumplanetary dust grains are functions of particle size, so the initial size distribution of the grains released from an impact onto a moon or ring particle is modified. The size distribution of the impact ejecta can be described by a power-law of the form n(r)drrqdr where n(r)dr is the number of particles in the size range [r,r + dr] and q is the power-law index. For hypervelocity impact excavation, q ≈ 3.5. Drag acts more efficiently on smaller grains resulting in a reduction in q of 1. Other dynamical processes can lead to particle-size dependent collision rates with other circumplanetary objects. These processes can lead to local steepening of the size distribution (increase in q) and to truncation of the dust size distribution to a narrow range of sizes.  相似文献   
3.
The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the Cassini orbiter spacecraft. UVIS has two spectrographic channels that provide images and spectra covering the ranges from 56 to 118 nm and 110 to 190 nm. A third optical path with a solar blind CsI photocathode is used for high signal-to-noise-ratio stellar occultations by rings and atmospheres. A separate Hydrogen Deuterium Absorption Cell measures the relative abundance of deuterium and hydrogen from their Lyman-α emission. The UVIS science objectives include investigation of the chemistry, aerosols, clouds, and energy balance of the Titan and Saturn atmospheres; neutrals in the Saturn magnetosphere; the deuterium-to-hydrogen (D/H) ratio for Titan and Saturn; icy satellite surface properties; and the structure and evolution of Saturn’s rings.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
4.
Cuzzi  J.N.  Colwell  J.E.  Esposito  L.W.  Porco  C.C.  Murray  C.D.  Nicholson  P.D.  Spilker  L.J.  Marouf  E.A.  French  R.C.  Rappaport  N.  Muhleman  D. 《Space Science Reviews》2002,104(1-4):209-251
Theoretical and observational progress in studies of Saturn's ring system since the mid-1980s is reviewed, focussing on advances in configuration and dynamics, composition and size distribution, dust and meteoroids, interactions of the rings with the planet and the magnetosphere, and relationships between the rings and various satellites. The Cassini instrument suite of greatest relevance to ring studies is also summarized, emphasizing how the individual instruments might work together to solve outstanding problems. The Cassini tour is described from the standpoint of ring studies, and major ring science goals are summarized. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号