首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   2篇
  国内免费   6篇
航空   45篇
航天技术   26篇
航天   23篇
  2024年   1篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   2篇
  2012年   17篇
  2011年   12篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   6篇
  1986年   1篇
  1981年   2篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
1.
2.
The designs of cold space telescopes, cryogenic and radiatively cooled, are similar in most elements and both benefit from orbits distant from the Earth. In particular such orbits allow the anti-sunward side of radiatively-cooled spacecraft to be used to provide large cooling radiators for the individual radiation shields. Designs incorporating these features have predictedT tel near 20 K. The attainability of such temperatures is supported by limited practical experience (IRAS, COBE). Supplementary cooling systems (cryogens, mechanical coolers) can be advantageously combined with radiative cooling in hybrid designs to provide robustness against deterioration and yet lower temperatures for detectors, instruments, and even the whole telescope. The possibility of such major additional gains is illustrated by the Very Cold Telescope option under study forEdison, which should offerT tel5 K for a little extra mechanical cooling capacity.  相似文献   
3.
Space Science Reviews - Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in...  相似文献   
4.
A principal goal of the Mars Science Laboratory (MSL) rover Curiosity is to identify and characterize past habitable environments on Mars. Determination of the mineralogical and chemical composition of Martian rocks and soils constrains their formation and alteration pathways, providing information on climate and habitability through time. The CheMin X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument on MSL will return accurate mineralogical identifications and quantitative phase abundances for scooped soil samples and drilled rock powders collected at Gale Crater during Curiosity’s 1-Mars-year nominal mission. The instrument has a Co X-ray source and a cooled charge-coupled device (CCD) detector arranged in transmission geometry with the sample. CheMin’s angular range of 5° to 50° 2θ with <0.35° 2θ resolution is sufficient to identify and quantify virtually all minerals. CheMin’s XRF requirement was descoped for technical and budgetary reasons. However, X-ray energy discrimination is still required to separate Co?Kα from Co?Kβ and Fe?Kα photons. The X-ray energy-dispersive histograms (EDH) returned along with XRD for instrument evaluation should be useful in identifying elements Z>13 that are contained in the sample. The CheMin XRD is equipped with internal chemical and mineralogical standards and 27 reusable sample cells with either Mylar? or Kapton? windows to accommodate acidic-to-basic environmental conditions. The CheMin flight model (FM) instrument will be calibrated utilizing analyses of common samples against a demonstration-model (DM) instrument and CheMin-like laboratory instruments. The samples include phyllosilicate and sulfate minerals that are expected at Gale crater on the basis of remote sensing observations.  相似文献   
5.
赵波  姜燕  别文博 《航空学报》2020,41(10):23685-023685
超声滚压加工是一种复合特种加工技术,其综合了传统滚压和超声加工的材料去除方式,在增加残余应力提高表面完整性、抗疲劳、抗腐蚀、耐磨损等方面具有显著的优势。自该技术应用至今,国内外学者做了大量有关超声滚压工艺及机理方面的研究,并在多种重要金属材料及关键零部件中应用。本文首先总结了国内外滚压装置的发展现状;其次论述了超声滚压机理研究的主要方法(理论法、有限元法和实验法)研究进展,指出以上3种方法的优缺点及待解决问题;随后总结了超声滚压对表面完整性(包括微观结构、表面形貌、微观硬度、残余应力)的影响规律,超声滚压对提高抗疲劳特性及其他性能影响,并指出超声滚压目前存在的不足及尚待解决的问题;最后就超声滚压技术进一步研究和发展方向进行展望,从而为曲面的超声滚压制造提供一定的参考。  相似文献   
6.
空间目标轨道确定专家系统的面向空间监测需求开发的大型交互式应用软件。它的功能面向空间监测和信息分析中广泛的业务需求,基础是轨道计算软件,数据库支持和一些辅助支持软件。本文详细地介绍了空间目标轨道确定专家系统软件的设计方案。  相似文献   
7.
In 2013 and 2015, investigations of the internal solar wind were carried out using the method of two-frequency radio sounding by signals from the Mars Express European spacecraft. The values of the S- and X-bands’ frequency and the differential frequency were registered with a sampling rate of 1s at the American and European networks of ground-based tracking stations. The spatial distribution of the frequency fluctuation’s level has been studied. It has been shown that the intensity of frequency fluctuation considerably decreases at high heliolatitudes. In some radio sounding sessions, quasiperiodic oscillations of sub-mHz band have been observed in the temporal spectra of frequency fluctuations; they are supposed to be associated with the density inhomogeneities, the sizes of which are close to the turbulence outer scale.  相似文献   
8.
Solar flares efficiently accelerate electrons to several tens of MeV and ions to 10 GeV. The acceleration is usually thought to be associated with magnetic reconnection occurring high in the corona, though a shock produced by the Coronal Mass Ejection (CME) associated with a flare can also accelerate particles. Diagnostic information comes from emission at the acceleration site, direct observations of Solar Energetic Particles (SEPs), and emission at radio wavelengths by escaping particles, but mostly from emission from the chromosphere produced when the energetic particles bombard the footpoints magnetically connected to the acceleration region. This paper provides a review of observations that bear upon the acceleration mechanism.  相似文献   
9.
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.  相似文献   
10.
Biological damages such as mutations, chromosomal aberrations etc. are a consequence of biochemical changes mostly in the DNA. With ionizing radiation, these chemical changes are due to primary ionization events and secondary ionization effects caused by the primarily produced electrons. Differences in the biological response of densely ionizing radiation, like heavy charged particles, in comparison to sparsely ionizing radiation, such as X- or gamma-rays, are mainly due to the differences in the production of the so called delta-electrons. Therefore, the emission process of electrons i.e. the cross section for the primary ionization event as well as the energy and angular distribution of the emitted electrons should be understood in detail. The delta-electron emission processes occuring in fast heavy ion atom collisions are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号