首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
航空   2篇
航天   12篇
  2012年   1篇
  2008年   2篇
  2006年   3篇
  2004年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1989年   1篇
排序方式: 共有14条查询结果,搜索用时 62 毫秒
1.
2.
The waste management strategy for the future should meet the benefits of humanity safety, respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. The biological treatment method is based upon the biodegradation of organic substances by various microorganisms. The advantage of the biodegradation waste management in general: it allows to diminish the volume of organic wastes, the biological hazard of the wastes is controlled, and this system may be compatible with the other systems. The objectives of our study were: to evaluate effectiveness of microbial biodegradation of non-pretreated substrate, to construct phneumoautomatic digester for organic wastes biodegradation, and to study microbial characteristics of active sludge samples used as inoculi in biodegradation experiment. The technology of vegetable wastes treatment was elaborated in IBMP and BMSTU. For this purpose the special unit was created where the degradation process is activated by enforced reinvention of portions of elaborated biogas into digester. This technology allows to save energy normally used for electromechanical agitation and to create optimal environment for anaerobic bacteria growth. The investigations were performed on waste simulator, which imitates physical and chemical content of food wastes calculated basing on the data on food wastes of moderate Russian city. The volume of created experimental sample of digester is 40 l. The basic system elements of device are digesters, gas receiver, remover of drops and valve monitoring and thermal control system. In our testing we used natural food wastes to measure basic parameters and time of biodegradation process. The diminution rate of organic gained 76% from initial mass taking part within 9 days of fermentation. The biogas production achieved 46 l per 1 kg of substrate. The microbial studies of biodegradation process revealed following peculiarities: (i) gradual quantitative increasing of Lactobacillus sp. (from 10(3) to 10(5) colony forming units (CFU) per ml), (ii) activation of Clostridia sp. (from 10(2) to 10(4)CFU/ml), (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae sp., Protea sp., staphylococci). The obtained results allow to evaluate effectiveness of proposed technology and to determine the leading role of lactobacilli and clostridia in process of natural wastes biodegradation. Our further investigations shall further be concentrated on creation of artificial inoculi for launching of food wastes biodegradation. These inoculi will include active and adapted strains of clostridia and lactobacilli.  相似文献   
3.
We present a summary of the physical principles and design of the Dynamic Albedo of Neutrons (DAN) instrument onboard NASA's 2009 Mars Science Laboratory (MSL) mission. The DAN instrument will use the method of neutron-neutron activation analysis in a space application to study the abundance and depth distribution of water in the martian subsurface along the path of the MSL rover.  相似文献   
4.
We have investigated an enzymatic racemization reaction as a marker for extraterrestrial life, which resulted in a change in optical rotation of a mandelic acid over time, as measured by polarimetry. Mandelate racemase was active in aqueous buffer in a temperature range between 0 degrees C and 70 degrees C and also in concentrated ammonium salt solutions and water-in-oil microemulsions in a temperature range between -30 degrees C and 60-70 degrees C; however, the enzyme was not active in several organic cryosolvents. Thus, we have demonstrated that concentrated ammonium salt solutions and water-in-oil microemulsions, both of which are able to form on extraterrestrial planets and moons in the presence of liquid water, are suitable media for enzyme reactions at subzero temperatures. Kinetic data for the mandelate racemase reaction obtained by polarimetry, while reproducible and internally consistent, differed significantly from several sets of data obtained previously by other methods such as chromatography and hydrogen-deuterium exchange. However, we conclude that reactions yielding a polarimetric signal, such as the racemizations employed in this work, are suitable mechanisms by which to utilize a change in chirality over time as a tool to detect signs of life.  相似文献   
5.
Laboratory studies, numerical simulations, and desert field tests indicate that aeolian dust transport can generate atmospheric electricity via contact electrification or "triboelectricity." In convective structures such as dust devils and dust storms, grain stratification leads to macroscopic charge separations and gives rise to an overall electric dipole moment in the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous numerical simulations indicate that these storm electric fields on Mars can approach the ambient breakdown field strength of approximately 25 kV/m. In terrestrial dust phenomena, potentials ranging from approximately 20 to 160 kV/m have been directly measured. The large electrostatic fields predicted in martian dust devils and storms can energize electrons in the low pressure martian atmosphere to values exceeding the electron dissociative attachment energy of both CO2 and H2O, which results in the formation of the new chemical products CO/O- and OH/H-, respectively. Using a collisional plasma physics model, we present calculations of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with the ambient electric field, with substantial production of dissociative products when fields approach the breakdown value of approximately 25 kV/m. The dissociation of H2O into OH/H- provides a key ingredient for the generation of oxidants; thus electrically charged dust may significantly impact the habitability of Mars.  相似文献   
6.
7.
8.
Deuri  AS  居建国 《上海航天》1989,(3):58-60
在我们较早的论文中,已经报导了以乙烯一丙烯二烯烃橡胶(EPDM)为基的一种新的固体推进剂火箭绝热层的配方和降解.此化合物满足绝热所需的所有技术性能.但是,绝热层的工艺尚未详细研究.为了对此化合物作现场实验,研究了成型压力、冷却速率及固化温度对技术性能和溶胀特性的影响.  相似文献   
9.
We investigate a new mechanism for producing oxidants, especially hydrogen peroxide (H2O2), on Mars. Large-scale electrostatic fields generated by charged sand and dust in the martian dust devils and storms, as well as during normal saltation, can induce chemical changes near and above the surface of Mars. The most dramatic effect is found in the production of H2O2 whose atmospheric abundance in the "vapor" phase can exceed 200 times that produced by photochemistry alone. With large electric fields, H2O2 abundance gets large enough for condensation to occur, followed by precipitation out of the atmosphere. Large quantities of H2O2 would then be adsorbed into the regolith, either as solid H2O2 "dust" or as re-evaporated vapor if the solid does not survive as it diffuses from its production region close to the surface. We suggest that this H2O2, or another superoxide processed from it in the surface, may be responsible for scavenging organic material from Mars. The presence of H2O2 in the surface could also accelerate the loss of methane from the atmosphere, thus requiring a larger source for maintaining a steady-state abundance of methane on Mars. The surface oxidants, together with storm electric fields and the harmful ultraviolet radiation that readily passes through the thin martian atmosphere, are likely to render the surface of Mars inhospitable to life as we know it.  相似文献   
10.
The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号