首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   4篇
航空   9篇
航天技术   1篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2010年   2篇
  2007年   1篇
  1997年   1篇
排序方式: 共有10条查询结果,搜索用时 218 毫秒
1
1.
谢理科  梁华  赵光银  魏彪  苏志  陈杰  田苗 《推进技术》2020,41(2):294-304
介质阻挡放电(DBD)均匀稳定、易于敷设,是机翼/翼型等离子体流动控制(PFC)中最常用的激励方式。射频介质阻挡放电激励频率高、放电功率大,且能在流场中产生明显的加热,应用潜力大。采用射频电源驱动DBD激励器产生等离子体,分析放电的体积力、热特性和诱导流场特性,开展了射频介质阻挡放电改善NACA 0015翼型气动性能的实验,研究了占空比、调制频率、载波频率和电源功率等参数对流动控制效果的影响规律。结果表明:射频等离子体激励的体积力效应随激励电压的增大而增加;射频等离子体激励产生的热量在诱导的流场中进行传导,加速流场;当来流速度为20m/s,Re=3.36×10~5时,在翼型前缘施加激励,使翼型临界失速迎角推迟1°,最大升力系数增大6.43%,且在过失速迎角下仍具有流动控制效果,使升力下降变缓;调制频率越大,控制效果越好;存在最佳占空比、载波频率和功率,占空比对流场控制效果的影响最显著,最佳占空比、载波频率和功率分别为20%,460kHz和50W。射频等离子体激励以体积力效应、热效应和诱导壁面射流改善失速流场,使得NACA0015翼型气动性能极大改善,流动分离得到有效控制。  相似文献   
2.
3.
典型短舱进气道在侧风飞行条件下会发生流动分离,产生进气畸变,严重影响发动机性能。将等离子体流动控制技术用于短舱进气道侧风畸变控制,改善进气流场品质。采用纹影系统研究微秒脉冲介质阻挡放电(μs-DBD)等离子体激励器的激励特性,结果表明,任一脉冲周期的开始时刻激励流场产生半圆形冲击波,微秒脉冲通过对流场进行快速加热,能够产生冲击扰动效应,促进流动掺混。随后,采用总压探针对短舱进气道气动交界面处的总压损失情况进行测量,探究μs-DBD抑制侧风条件下短舱流动分离的规律。结果表明:μs-DBD激励能有效降低侧风条件下进气道分离流场的出口截面总压损失系数,缩小侧风分离区;流动控制效果随激励频率的增大而增强,当激励频率达到一定阈值后,流动分离得到完全控制;保持短舱进气道轴向与来流之间的夹角不变,在相同激励频率下,来流速度增大,流场分离程度减小,流动分离控制效果增强,分离流场得到完全控制所需的激励频率降低;探究不同激励器布局的控制效果,在相同来流参数和激励器参数下,展向布局激励效果优于流向布局激励。为进一步模拟真实发动机的影响,在短舱后部进行抽吸,短舱流通能力得到提升,流动分离减弱,但μs-DBD激励仍能对侧风流动分离进行有效控制,流动控制效果随激励频率的变化规律与无抽吸情况下相同。  相似文献   
4.
根据野外样方调查数据采用对数级数分布、对数正态分布模型研究了广州从化陈和洞自然保护区常绿阔叶林的物种多度分布格局,试图寻找某种适合的理论分布来预测物种多度分布形式,以拓宽常绿阔叶林物种多样性研究的数量分析方法.结果表明,陈和洞自然保护区3个样地中胸径≥ 3 cm的乔木个体共有1 855株,林分平均密度为3 091株/hm2,其中,上库、上库南坡、上库山顶西坡的物种多度分别为648、366和841.以上3个样地的物种多度分布差异极显著(P<0.01),上库、上库山顶西坡处的乔木林树种多度分布格局均遵从对数级数分布和对数正态分布,上库南坡处的乔木树种遵从对数正态分布,但不遵从对数级数分布.总的来说,用对数分布模型描述常绿阔叶林的物种多度分布格局是基本可行的,同时采用"多度/频度"图解方式来探讨物种多度分布的对数分布,效果较好.  相似文献   
5.
多路等离子体合成射流改善翼型性能实验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
苏志  李军  梁华  魏彪  陈杰 《推进技术》2018,39(9):1928-1937
等离子体合成射流(PSJ)响应快,频带宽,强度大,在飞行器增升减阻领域具有广阔应用前景。但常规等离子体合成射流只是单点激励,作用范围小,控制效果弱。为提高等离子体合成射流抑制机翼流动分离的能力,设计了一种新型多路放电电路驱动合成射流,使单个电源产生5~12路多点、高强度合成射流激励,并将其用于高升力翼型失速分离控制。研究了激励频率、电容能量、来流速度和激励位置对流动控制效果的影响以及阵列式激励的控制规律。实验结果表明:12路PSJs各路均能产生较强的冲击波和射流,能有效抑制翼型吸力面的流动分离,增加升力,推迟失速;当激励频率为150Hz使无量纲频率等于4.8时,流动控制效果最好;电容能量越大,来流速度越小,流动控制效果越好;翼型距前缘15%c处为最佳激励位置,在主翼后缘施加激励与前缘激励类似,能有效抑制主翼流动分离;在主翼前缘和后缘同时施加激励,增升效果变强,推迟失速的能力降低。流场存在延迟效应,延迟时间不小于585s。  相似文献   
6.
飞机结冰是严重影响飞行安全的潜在危险因素之一.本文针对飞机结冰问题提出了保障结冰条件下飞行安全的等离子体冰形调控方法,开展了基于等离子防除冰冰形调控的冰风洞试验,进行了冰形调控规律的探索,并在无人机上对冰形调控方法进行了验证.结果表明,等离子体冰形调控可按照设计的布局防止结冰从而获得所预期的调制冰形;单个冰形宽度与弦长比即无量纲冰形尺寸(d/c)和单个冰形宽度与单个无冰间隙宽度比即无量纲调控比例(d/l)决定了调控效果;对于固定的无量纲调控比例,无量纲冰形尺寸比值在0.1~0.2之间时获得最佳的升力系数;无量纲调控比越低,机翼升力系数越高.在无人机飞行测试中,通过前缘冰形调制策略提高飞行气动性能的验证,结果表明:相比于机翼前缘全结冰,前缘冰形调制后,失速迎角延迟4°,在大迎角下的升力系数普遍恢复了20%~30%.本文给出了冰形调控的方法和调控规律,并指出选用合适的无量纲冰形尺寸和调制比有助于获得结冰条件下最佳的气动性能,同时通过无人机飞行试验验证了方法的有效性.  相似文献   
7.
谢理科  梁华  李军  苏志  魏彪  陈杰  田苗 《推进技术》2019,40(10):2216-2225
等离子体流动控制(PFC)能有效抑制翼型附面层分离,增加升力,推迟失速,应用前景广阔。流场的延迟效应是指采用PFC进行流动控制时,激励关闭后,流动控制效果仍存在的现象。本文对新型微秒脉冲介质阻挡放电(μs-DBD)的体积力和冲击波特性进行测试,并在此基础上开展风洞实验,进行流场的延迟效应研究,测试μs-DBD的延迟时间和参数影响规律。结果表明,μs-DBD能同时产生体积力和冲击波作用,同时也能在流场中产生明显的延迟效应,延迟时间不小于1200s,远大于毫秒脉冲介质阻挡放电(AC-DBD)产生的延迟时间(150s);激励电压和来流速度越大,翼型迎角越小,延迟效应越强;等离子体激励能使流场失稳分岔,并转变为更优的分岔解;延迟效应研究在节约能耗、延长激励器寿命、PFC控制律设计和风洞实验方法优化等方面有重要意义。  相似文献   
8.
为了分析单个工序结束时间的变化对项目工期的敏感性,以总时差的概念及定理为基础,利用概率分析的原理及方法,确定了工序结束时间的变化在不同条件下的概率值,构建了项目工期单因素不确定性分析的指标评价体系,简要说明了指标体系中确定相关参数的思路与方法;然后,采用单因素敏感性分析法,重点分析了关键工序结束时间的变化对项目工期的敏感性,给出了不同关键工序结束时间的变化对项目工期的敏感性的判别方法,以及如何从被考虑的多个关键工序中找出需要重点考虑的对总工期敏感性最强的工序;最后,通过算例进行验证和说明.该评价体系在实践中有助于项目进度计划与控制,重点监督与控制对总工期敏感性强的工序,为项目工期的多因素不确定性分析奠定理论基础.   相似文献   
9.
在1994年航空院校马列主义理论课协作会上,我校向会议并向总公司提交了我校两课教学改革的方案(详见《西航教育》1995年增刊)。这一方案涉及到课程设置的改革,内容的改革和方法的改革。根据主客观条件及难易程度的不同,改革方案分期从95年3月和95年9月开始实施。我们的改革虽然力度不大,但是进展还比较平稳,取得了一些相应的效果,也受到了同学们的欢迎。总结过去,体会颇多,现提供出来,请上级领导、专家、同行批评指教。  相似文献   
10.
飞机结冰威胁飞行安全,针对这一问题,通过记录结冰动态过程及测量表面温度变化对比研究了布置在NACA0012翼型上的等离子体激励、电阻丝电热及石墨烯电热在结冰风洞中的防冰性能。结果表明:在输入功率相同的情况下,等离子体激励和石墨烯电热均能有效地实现防冰,而电阻丝电热在无热源区域无法完全预防结冰。红外测量结果表明:石墨烯电热膜加热后表面最高温度低于其他2种方法。然而,由于其均匀的加热特性,整个加热表面的最低温度保持在0℃以上,足以防止结冰。对于等离子体激励和电阻丝电热,二者表面的温度分布具有不均匀性,通过散热性能对比,等离子体激励要高于电阻丝电热。等离子体激励通过在近壁面气体放电直接加热激励器周围的来流冷空气与过冷水滴,而电阻丝加热对绝缘介质的热传导性能差,无法有效增加周围热量致使容易在无热源区域结冰。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号