首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
  国内免费   7篇
航空   9篇
航天技术   2篇
航天   1篇
  2020年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Four future missions for deep space exploration and future space-based exoplanet surveys on habitable planets by 2030 are scheduled to be launched. Two Mars exploration missions are designed to investigate geological structure, the material on Martian surface, and retrieve returned samples. The asteroids and main belt comet exploration is expected to explore two objects within 10 years. The small-body mission will aim to land on the asteroid and get samples return to Earth. The basic physical characteristics of the two objects will be obtained through the mission. The exploration of Jupiter system will characterize the environment of Jupiter and the four largest Moons and understand the atmosphere of Jupiter. In addition, we further introduce two space-based exoplanet survey by 2030, Miyin Program and Closeby Habitable Exoplanet Survey (CHES Mission). Miyin program aims to detect habitable exoplanets using interferometry, while CHES mission expects to discover habitable exoplanets orbiting FGK stars within 10 pc through astrometry. The above-mentioned missions are positively to achieve breakthroughs in the field of planetary science.   相似文献   
2.
A seal device as an important component of aeroengines has decisive influence on per- formance, reliability, and working life of aeroengines. With the development of aeroengines, demands on the performance characteristics of seal devices are made strictly. Finger seal as a novel kind of sealing device, recently attracts more and more attentions in academic circles and engineer- ing fields at home and abroad. Research on finger seals has been extensively developed, especially on leakage and wear performances under dynamic conditions. However, it is a pity that the work on finger seals has been limited with a single approach that is improving the performance by structural optimization; in addition, the technology of dynamic analysis on finger seals is weak. Aiming at the problems mentioned above, a distributed mass equivalent dynamic model of finger seals considering the coupling effect of overlaid laminates is established in the present paper, the dynamic perfor- mance of 2.5 dimension C/C composite finger seal is analyzed with the model, and then the effects of fiber bundle density and fiber bundle preparation direction on finger seal's dynamic performance are discussed, as well as compared with those of Co-based alloy finger seal. The current work is about dynamic analysis of finger seals and application of C/C composite in this paper may have much academic significance and many engineering values for improving research level of finger seal dynamics and exploring feasibility of C/C composite being used for finger seals.  相似文献   
3.
This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears.  相似文献   
4.
The flow-field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically studied.Results obtained from four combustion models,combined with the re-normalization group(RNG) k-ε turbulence model,discrete ordinates radiation model and enhanced wall treatment are presented and discussed.The results are compared with a comprehensive database obtained from a series of experimental measurements.The flow patterns and the recirculation zone length in the combustion chamber are accurately predicted,and the mean axial velocities are in fairly good agreement with the experimental data,particularly at downstream sections for all four combustion models.The mean temperature profiles are captured fairly well by the eddy dissipation(EDS),probability density function(PDF),and laminar flamelet combustion models.However,the EDS-finite-rate combustion model fails to provide an acceptable temperature field.In general,the flamelet model illustrates little superiority over the PDF model,and to some extent the PDF model shows better performance than the EDS model.   相似文献   
5.
The low diffusion (LD) particle method, proposed by Burt and Boyd, is modified for the near-continuum two-phase flow simulations. The LD method has the advantages of easily coupling with the direct simulation Monte Carlo (DSMC) method for multi-scale flow simulations and dramatically reducing the numerical diffusion error and statistical scatter of the equilibrium particle methods. Liquidor solid-phase particles are introduced in the LD method. Their velocity and temperature updating are respectively, calculated from the motion equation and the temperature equation according to the local gas properties. Coupling effects from condensed phase to gas phase are modeled as momentum and energy sources, which are respectively, equal to the negative values of the total momentum and energy increase in liquid or solid phase. The modified method is compared with theoretical results for unsteady flows, and good agreements are obtained to indicate the reliability of the one-way gas-to-particle coupling models. Hybrid LD-DSMC algorithm is implemented and performed for nozzle discharging gas-liquid flow to show the prospect of the LD-DSMC scheme for multi-scale two-phase flow simulations.  相似文献   
6.
Chang'E-1 Lunar Mission:An Overview and Primary Science Results   总被引:3,自引:0,他引:3       下载免费PDF全文
Chang'E-1 is the first lunar mission in China, which was successfully launched on Oct. 24th, 2007. It was guided to crash on the Moon on March 1, 2009, at 52.36oE, 1.50oS, in the north of Mare Fecunditatis. The total mission lasted 495 days, exceeding the designed life-span about four months. 1.37 Terabytes raw data was received from Chang'E-1. It was then processed into 4 Terabytes science data at different levels. A series of science results have been achieved by analyzing and applicating these data, especially "global image of the Moon of China's first lunar exploration mission'. Four scientific goals of Chang'E-1 have been achieved. It provides abundant materials for the research of lunar sciences and cosmochemistry. Meanwhile these results will serve for China's future lunar missions.   相似文献   
7.
圆柱容器液体晃动问题的数值计算   总被引:10,自引:0,他引:10  
本文将二维VOF方法推广到三维情形,研究了圆柱容器遭受水平强迫振荡时的液体晃动问题。在数值模型中,采用了改进的施主与受主单元体方法计算流体在单元体之间的交换。同时对处理任意容器边界的部分单元体方法进行了改进,使之满足边界面上的速度边界条件。应用改进后的VOF方法得到的结果与试验结果符合较好,能够成功地数模出由于动力不稳定性引起的圆柱容器遭受纵向水平振荡时液体表面的旋转运动响应。  相似文献   
8.
Fouling deposits on aluminum heat exchanger reduce the heat transfer efficiency and cause corrosion to the apparatus.This study focuses on the corrosive behavior of aluminum coupons covered with a layer of artificial fouling in a humid atmosphere by their weight loss,Tafel plots,electrochemical impedance spectroscopy(EIS),and scanning electron microscope(SEM)observations.The results reveal that chloride is one of the major elements found in the fouling which damages the passive film and initiates corrosion.The galvanic corrosion between the metal and the adjacent carbon particles accelerates the corrosive process.Furthermore,the black carbon favors the moisture uptake,and gives the dissolved oxygen greater chance to migrate through the fouling layer and form a continuous diffusive path.The corrosion rate decreasing over time is conformed to electrochemistry measurements and can be verified by Faraday’s law.The EIS results indicate that the mechanism of corrosion can be interpreted by the pitting corrosion evolution mechanism,and that pitting was observed on the coupons by SEM after corrosive exposure.  相似文献   
9.
Vortex-acoustic coupling is one of the most important potential sources of combustion instability in solid rocket motors (SRMs). Based on the Von Karman Institute for Fluid Dynamics (VKI) experimental motor, the influence of the thermal inhibitor position and temperature on vortex-shedding-driven pressure oscillations is numerically studied via the large eddy simulation (LES) method. The simulation results demonstrate that vortex shedding is a periodic process and its accurate frequency can be numerically obtained. Acoustic modes could be easily excited by vortex shedding. The vortex shedding frequency and second acoustic frequency dominate the pressure oscillation characteristics in the chamber. Thermal inhibitor position and gas temperature have little effect on vortex shedding frequency, but have great impact on pressure oscillation amplitude. Pressure amplitude is much higher when the thermal inhibitor locates at the acoustic velocity anti-nodes. The farther the thermal inhibitor is to the nozzle head, the more vortex energy would be dissipated by the turbulence. Therefore, the vortex shedding amplitude at the second acoustic velocity antinode near 3/4L (L is chamber length) is larger than those of others. Besides, the natural acoustic frequencies increase with the gas temperature. As the vortex shedding frequency departs from the natural acoustic frequency, the vortex-acoustic feedback loop is decoupled. Consequently, both the vortex shedding and acoustic amplitudes decrease rapidly.  相似文献   
10.
Wang W  Yang B  Qu Y  Liu X  Su W 《Astrobiology》2011,11(5):471-476
The iron-sulfur world (ISW) theory is an intriguing prediction regarding the origin of life on early Earth. It hypothesizes that life arose as a geochemical process from inorganic starting materials on the surface of sulfide minerals in the vicinity of deep-sea hot springs. During the last two decades, many experimental studies have been carried out on this topic, and some interesting results have been achieved. Among them, however, the processes of carbon/nitrogen fixation and biomolecular assembly on the mineral surface have received an inordinate amount of attention. To the present, an abiotic model for the oxidation-reduction of intermediates participating in metabolic pathways has been ignored. We examined the oxidation-reduction effect of a prebiotic FeS/S/FeS(2) redox system on the interconversion between several pairs of α-hydroxy acids and α-keto acids (i.e., lactate/pyruvate, malate/oxaloacetate, and glycolate/glyoxylate). We found that, in the absence of FeS, elemental sulfur (S) oxidized α-hydroxy acids to form corresponding keto acids only at a temperature higher than its melting point (113°C); in the presence of FeS, such reactions occurred more efficiently through a coupled reaction mechanism, even at a temperature below the phase transition point of S. On the other hand, FeS was shown to have the capacity to reversibly reduce the keto acids. Such an oxidoreductase-like chemistry of the FeS/S/FeS(2) redox system suggests that it can determine the redox homeostasis of metabolic intermediates in the early evolutionary phase of life. The results provide a possible pathway for the development of primordial redox biochemistry in the iron-sulfur world. Key Words: Iron-sulfur world-FeS/S/FeS(2) redox system-Oxidoreductase-like chemistry. Astrobiology 11, 471-476.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号