首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4670篇
  免费   2114篇
  国内免费   710篇
航空   4318篇
航天技术   678篇
综合类   266篇
航天   2232篇
  2024年   33篇
  2023年   81篇
  2022年   215篇
  2021年   256篇
  2020年   198篇
  2019年   221篇
  2018年   190篇
  2017年   242篇
  2016年   268篇
  2015年   270篇
  2014年   378篇
  2013年   320篇
  2012年   366篇
  2011年   363篇
  2010年   313篇
  2009年   339篇
  2008年   302篇
  2007年   300篇
  2006年   283篇
  2005年   298篇
  2004年   216篇
  2003年   258篇
  2002年   208篇
  2001年   177篇
  2000年   153篇
  1999年   178篇
  1998年   149篇
  1997年   145篇
  1996年   121篇
  1995年   98篇
  1994年   94篇
  1993年   89篇
  1992年   84篇
  1991年   57篇
  1990年   62篇
  1989年   70篇
  1988年   60篇
  1987年   20篇
  1986年   2篇
  1985年   16篇
  1984年   1篇
排序方式: 共有7494条查询结果,搜索用时 187 毫秒
131.
近代大型液体火箭发动机的特点   总被引:1,自引:2,他引:1       下载免费PDF全文
王之任 《推进技术》1991,12(4):29-35
本文对近代大型液体火箭发动机的特点进行了综述和分析.文中指出:使用高能、无毒的液氧、煤油和液氧、液氢为大型液体火箭发动机的推进剂势在必行;采用高压补燃循环系统可以明显提高发动机的比冲、减小发动机尺寸和质量;采用推进剂利用系统可以减少推进剂的剩余量,以提高运载火箭的有效载荷;使用辅助增压泵可降低贮箱压力,并提高发动机主泵的入口压力,以保证主泵在没有汽蚀的条件下可靠工作;高可靠性、长寿命和重复使用对航天产品尤为重要.  相似文献   
132.
本文针对某型导弹由两级固体火箭发动机组成的联合动力装置进行九变量寻优计算.通过采用二维抛物线插值方法及合理组织迭代的技巧,解决了庞大的目标函数计算子程序耗时太多的问题;经大量调试,协调寻优步长、罚因子、收敛精度,最后成功地完成了本文的九维寻优计算,得到了能稳定收敛的最优解.所得最优方案比原参考方案的发动机总重减轻7.03kg(约占总重的2%).  相似文献   
133.
旋转同心双轴间流动的热态实验   总被引:1,自引:1,他引:1       下载免费PDF全文
吴宏伟  丁水汀  袁怡祥  徐国强  陶智 《推进技术》2001,22(5):397-399,414
某型发动机高、低压涡轮轴间环形气流通内的流动可以简化为两个独立旋转同心双轴环道内的流动问题。对其控制方程以及边界条件进行无量纲化,得出了实验准则,设计并建立了实验台,以实验方法研究了具有轴向通流的独立旋转同心双轴环道内的流动规律。结果表明,随着冷气雷诺数增大,阻力系数总体趋势减小;冷气雷诺数的影响远大于内轴和外轴旋转对流动的影响。  相似文献   
134.
本文在聚氧提高航机部件性能,总体性能的研究基础上,进一步探索航空发动机聚氧减重的规律,提供聚氧缩短压气机、燃烧室、涡轮轴向尺寸、减少发动机直径、减轻上述核心机部件和发动机总重量的理论依据,可供航机预研参考。  相似文献   
135.
基于解析及特征造型的涡轮冷却叶片参数化设计   总被引:4,自引:2,他引:4       下载免费PDF全文
虞跨海  李立州  岳珠峰 《推进技术》2007,28(6):637-640,656
基于数学解析与特征造型技术相结合的方法,建立了基于构造过程的复杂涡轮冷却叶片的参数化设计技术。用五次多项式描述叶身型线,根据壁面厚度函数求解冷却通道外形,定义冷却通道隔板位置及厚度等参数,计算得到叶身及冷却通道各截面造型数据;以特征造型方法完成对涡轮冷却叶片转弯流道、缘板、榫头及叶片相关特征的参数化设计;利用CAD系统的二次开发接口,实现了多腔回流式涡轮冷却叶片的自动建模。  相似文献   
136.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
137.
杨文将  刘宇 《飞行力学》2006,24(2):47-50
针对磁悬浮助推水平起飞运载器这种新型发射概念,采用概念性分析方法,研究地面发射参数对可重复使用运载器性能的影响规律。结果表明,助推发射水平起飞运载器在降低初始推重比、推进剂和结构质量等方面具有优势,最后得出地面发射参数的一组优化值。  相似文献   
138.
In 1998, Comet 9P/Tempel 1 was chosen as the target of the Deep Impact mission (A’Hearn, M. F., Belton, M. J. S., and Delamere, A., Space Sci. Rev., 2005) even though very little was known about its physical properties. Efforts were immediately begun to improve this situation by the Deep Impact Science Team leading to the founding of a worldwide observing campaign (Meech et al., Space Sci. Rev., 2005a). This campaign has already produced a great deal of information on the global properties of the comet’s nucleus (summarized in Table I) that is vital to the planning and the assessment of the chances of success at the impact and encounter. Since the mission was begun the successful encounters of the Deep Space 1 spacecraft at Comet 19P/Borrelly and the Stardust spacecraft at Comet 81P/Wild 2 have occurred yielding new information on the state of the nuclei of these two comets. This information, together with earlier results on the nucleus of comet 1P/Halley from the European Space Agency’s Giotto, the Soviet Vega mission, and various ground-based observational and theoretical studies, is used as a basis for conjectures on the morphological, geological, mechanical, and compositional properties of the surface and subsurface that Deep Impact may find at 9P/Tempel 1. We adopt the following working values (circa December 2004) for the nucleus parameters of prime importance to Deep Impact as follows: mean effective radius = 3.25± 0.2 km, shape – irregular triaxial ellipsoid with a/b = 3.2± 0.4 and overall dimensions of ∼14.4 × 4.4 × 4.4 km, principal axis rotation with period = 41.85± 0.1 hr, pole directions (RA, Dec, J2000) = 46± 10, 73± 10 deg (Pole 1) or 287± 14, 16.5± 10 deg (Pole 2) (the two poles are photometrically, but not geometrically, equivalent), Kron-Cousins (V-R) color = 0.56± 0.02, V-band geometric albedo = 0.04± 0.01, R-band geometric albedo = 0.05± 0.01, R-band H(1,1,0) = 14.441± 0.067, and mass ∼7×1013 kg assuming a bulk density of 500 kg m−3. As these are working values, {i.e.}, based on preliminary analyses, it is expected that adjustments to their values may be made before encounter as improved estimates become available through further analysis of the large database being made available by the Deep Impact observing campaign. Given the parameters listed above the impact will occur in an environment where the local gravity is estimated at 0.027–0.04 cm s−2 and the escape velocity between 1.4 and 2 m s−1. For both of the rotation poles found here, the Deep Impact spacecraft on approach to encounter will find the rotation axis close to the plane of the sky (aspect angles 82.2 and 69.7 deg. for pole 1 and 2, respectively). However, until the rotation period estimate is substantially improved, it will remain uncertain whether the impactor will collide with the broadside or the ends of the nucleus.  相似文献   
139.
某型涡喷发动机的可靠性增长分析   总被引:2,自引:4,他引:2  
针对某型涡喷发动机的一组含零故障的多台不同步截尾故障数据。给出了趋势检验、AMSAA模型的拟合优度检验及模型参数的极大似然估计方法。分析表明,该型发动机有显著的可靠性增长,且可用AMSAA模型拟合其故障数据,在考虑零故障后,其参数及MTBF的极大似然估计(MLE)更为可信。  相似文献   
140.
详细分析了发动机瞬变过程中热传递对压气机稳定性的影响机理,建立了热传递对压气机稳定裕度影响的数学模型,并以一台增压比为26的涡扇发动机为例进行计算,结果表明了建立模型的正确性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号