首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5578篇
  免费   1044篇
  国内免费   1216篇
航空   4541篇
航天技术   1336篇
综合类   777篇
航天   1184篇
  2024年   19篇
  2023年   103篇
  2022年   188篇
  2021年   242篇
  2020年   272篇
  2019年   297篇
  2018年   297篇
  2017年   323篇
  2016年   344篇
  2015年   326篇
  2014年   422篇
  2013年   354篇
  2012年   426篇
  2011年   456篇
  2010年   351篇
  2009年   378篇
  2008年   347篇
  2007年   376篇
  2006年   319篇
  2005年   278篇
  2004年   235篇
  2003年   243篇
  2002年   155篇
  2001年   153篇
  2000年   138篇
  1999年   139篇
  1998年   107篇
  1997年   70篇
  1996年   69篇
  1995年   72篇
  1994年   71篇
  1993年   52篇
  1992年   47篇
  1991年   53篇
  1990年   39篇
  1989年   35篇
  1988年   29篇
  1987年   10篇
  1986年   3篇
排序方式: 共有7838条查询结果,搜索用时 15 毫秒
161.
李博  张鹤宇  杨军 《航空动力学报》2020,35(10):2159-2165
为了探索引压管腔在动态压力校准和使用中不同环境因素对动态特性的影响,推导了管腔传压模型和谐振频率关系式,确立了影响管腔动态特性的参数,包括静态压力、温度、气体介质等。采用引压管腔专用实验装置进行了不同环境参数状态的实验验证,结果表明:静态压力仅会影响管腔在谐振频率附近的输出,随着静态压力的增大而非线性增大,对动态特性并无明显改变;温度会改变管腔的谐振频率和动态特性,随着温度的升高,谐振频率增大但输出幅值随之减小;气体介质的不同会彻底改变管腔动态特性,主要取决于介质的声速。该研究为引压管腔在使用环境下数据的评价和数据修正上提供了一定参考依据。  相似文献   
162.
《中国航空学报》2020,33(1):161-175
Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag. This study aims to investigate the effects of flowfield modeling parameters of injection and freestream on the flow structure and aerodynamics of a blunt body with an opposing jet in hypersonic flow. Reynolds-Averaged Navier-Stokes (RANS) equations with a Shear Stress Transport (SST) turbulence model are employed to simulate the intricate jet flow interaction. Through utilizing a Non-Intrusive Polynomial Chaos (NIPC) method to construct surrogates, a functional relation is established between input modeling parameters and output flowfield and aerodynamic quantities in concern. Sobol indices in sensitivity analysis are introduced to represent the relative contribution of each parameter. It is found that variations in modeling parameters produce large variations in the flow structure and aerodynamics. The jet-to-freestream total-pressure ratio, jet Mach number, and freestream Mach number are the major contributors to variation in surface pressure, demonstrating an evident location-dependent behavior. The penetration length of injection, reattachment angle of the shear layer, and aerodynamic drag are also most sensitive to the three crucial parameters above. In comparison, the contributions of freestream temperature, freestream density, and jet total temperature are nearly negligible.  相似文献   
163.
《中国航空学报》2020,33(12):3082-3091
Owing to the strong coupling among the hydrodynamic forces, aerodynamic forces and motion of amphibious aircraft during the water takeoff process, the water takeoff performance is difficult to calculate accurately and quickly. Based on an analysis of the dynamics and kinematics characteristics of amphibious aircraft and the hydrodynamic theory of high-speed planing hulls, a suitable mathematical model is established for calculating the hydrodynamics of aircraft during water takeoff. A pilot model is designed to illustrate how pilots are affected by the lack of visual reference and the necessity to simultaneously control the pitch angle, flight velocity and other parameters during water takeoff. Combined with the aerodynamic model, engine thrust model and aircraft motion model, a digital virtual flight simulation model is developed for amphibious aircraft during water takeoff, and a calculation method for the water takeoff performance of amphibious aircraft is proposed based on digital virtual flight. Typical performance indicators, such as the liftoff time and liftoff distance, can be obtained via digital virtual flight calculations. A comparison of the measured flight test data and the calculation results shows that the calculation error is less than 10%, which verifies the correctness and accuracy of the proposed method. This method can be used for the preliminary evaluation of airworthiness compliance of amphibious aircraft design schemes, and the relevant calculation results can also provide a theoretical reference for the formulation of flight test plans for airworthiness certification.  相似文献   
164.
曾军  张维涛  王鹏飞  雷鸣  郑振江 《推进技术》2020,41(6):1268-1275
以空心气冷低压涡轮动叶为研究对象,采用高质量的流体域和固体域网格控制技术,带转捩模型的双方程SST湍流模型,开展了基于CFD方法的叶片气热耦合问题研究。获得了不同冷气流量比(分别为1.0%,1.38%,1.8%和2.2%)、温比(分别为2.1,2.25,2.3,2.4和2.5)和压比(分别为1.4,1.6和1.8)对叶片换热特性的影响规律,设计状态中截面按弧长平均的叶片壁面金属温度计算值较试验值偏小0.3%,气热耦合计算的叶片壁面温度分布与试验结果吻合良好,验证了气热强耦合计算方法的精度,为涡轮叶片温度场分析提供了一种有效的方法。  相似文献   
165.
器材消耗量预测是做好技术保障工作的前提和基础,受设备生命周期、任务类型、海洋环境及使用设备人员的技能水平等因素的影响,舰船器材消耗量序列会随着时间的推移而产生波动现象,丛集效应和高峰厚尾特征明显。根据 AIC(A-Information Criterion)准则,对 GARCH(Generalized Autoregressive Conditional Heteroscedasticity)族模型进行比较优选,寻求一种更为合适的预测模型,实现对消耗量的准确预测。  相似文献   
166.
鉴于导弹中的电子设备价格昂贵、可用于试验的样本量少,在开展加速试验以及寿命预测的实际工作中通常为小样本的背景。文章研究探索小样本条件下多应力加速试验寿命预测方法,分别建立通用对数线性模型、 BAS-BP神经网络模型、灰色–支持向量回归模型,结合多应力加速试验数据在各应力条件下的样本容量分别为 56组、20组、10组、5组的情况下,比较 3种模型的预测效果,分析各模型的适用场合和时机,探索小样本条件下模型的选优问题,为小样本条件下多应力加速试验寿命预测提供有益的借鉴。  相似文献   
167.
航空公司运行控制中心是航空公司的核心,而飞行签派员又是运行控制中心的核心,运行控制中心的 效率直接影响到航空公司的运行安全与效益。根据航空公司飞行签派员的特点和管理现状,对效率量化和效 率评估进行分析研究,采用改进层次分析法(AHP)和物元可拓模型相结合的方法,建立适合我国航空公司飞 行签派员运行效率评估模型;针对评价指标在实际情况下更具有针对性和可操作性,提出4项准则和16项指 标组成的基于签派员航空公司运行效率评价指标体系,并进行算例分析。结果表明:所构建的评价指标体系合 理有效,能够真实反映出航空公司的运行效率与飞行签派员、运控设备、AOC组织结构与工作环境和航空公司 管理规定有着密切联系,为公司运行效率的提升提出理论依据。  相似文献   
168.
retro-GEO是指逆行(retrograde)地球静止轨道(geostationary Earth orbit,GEO),该轨道与GEO轨道高度相同或相近,但倾角为180°,安装在retro-GEO卫星上的巡视器可每12 h对GEO带空间资产附近碎片环境安全预警.直接西向发射retro-GEO卫星存在地面测控和发射...  相似文献   
169.
地面效应对尾涡消散的影响研究   总被引:2,自引:0,他引:2  
采用大涡模拟方法可以分析和计算近地阶段尾涡消散和运动规律,但模型繁琐、计算复杂。本研究基于镜像涡方法建立了形式相对简单、计算迅速的近地尾涡运动模型和消散模型,计算结果与激光雷达测量数据和大涡模拟数据的偏差都不超过5%,满足动态尾涡间隔研究的需要。  相似文献   
170.
飞机发动机混沌振动信号盲分离检测方法   总被引:1,自引:0,他引:1  
发动机混沌振动信号携带着丰富的状态信息,依据混沌振动信号进行状态监测及故障诊断是一种很有前途的技术手段,但由于混沌信号具有伪随机特性及在低频段具有宽频谱等特点,使得传统的方法很难将其从振动信号中分离。在提取混沌振动信号方面,使用快速独立分量分析(Fast ICA)盲分离方法分离出飞机发动机振动信号中的混沌信号。利用功率谱和Lyapunov指数(LE)方法进行了判定,根据计算结果对发动机状态做出判断,验证了盲分离方法分离混沌振动信号的有效。盲分离检测混沌振动信号的方法不仅使依据混沌信号判断飞机发动机状态成为可能,也为利用混沌信号进行状态预测和控制提供了一种方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号