首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   51篇
  国内免费   58篇
航空   340篇
航天技术   44篇
综合类   28篇
航天   17篇
  2024年   1篇
  2023年   4篇
  2022年   9篇
  2021年   19篇
  2020年   14篇
  2019年   21篇
  2018年   13篇
  2017年   19篇
  2016年   30篇
  2015年   23篇
  2014年   27篇
  2013年   17篇
  2012年   21篇
  2011年   26篇
  2010年   19篇
  2009年   25篇
  2008年   21篇
  2007年   11篇
  2006年   17篇
  2005年   11篇
  2004年   12篇
  2003年   8篇
  2002年   14篇
  2001年   9篇
  2000年   7篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   7篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有429条查询结果,搜索用时 46 毫秒
181.
优化转速旋翼性能分析与应用   总被引:1,自引:0,他引:1  
旋翼转速的变化会对直升机性能产生重要影响,通过建立优化转速旋翼性能分析综合模型,包含PetersHe广义动态入流模型和全机配平模型,以国产现役某轻型直升机为例,分析前飞速度、起飞质量、飞行高度等对变转速旋翼转速优化路径的影响,分析变转速旋翼技术对提高直升机航时等性能的可能性。分析结果表明:通过合理降低旋翼转速,可以使最大起飞质量下的需用功率降低30%;起飞质量越轻、飞行高度越低,旋翼优化转速越低,需用功率降低越明显;通过优化转速完全消耗400kg燃油,通过优化旋翼转速,可使最大续航时间提高20.5%,最大航程提高8.5%;桨叶内段布置厚翼型能提高桨叶刚度,增加大速度时需用功率,但对中低速度飞行时总体性能影响较小,不影响长航时的优点。  相似文献   
182.
对旋风机前后级转速比对风机气动特性影响较大,合适的转速比有利于提高对旋风机气动性能。采用数值计算和实验模拟方法研究对旋风机前后两级叶轮转速改变对风机气动特性的影响。首先,通过速度三角形定量分析转速改变对风机功率和内部流动参数的影响。之后,数值计算的结果与实验进行对比,分析基准转速下风机整体性能的变化。最后,通过数值计算结果对风机内部气体的流动进行具体分析,发现在保持进口条件不变的条件下,前后两级叶轮转速改变相同百分比时,第1级转速改变可以更加有效的改变风机的流动参数和性能,综合比较整体性能变化与实际应用确定了最优转速比为1.1∶1,此转速比下传动效率为88.4%时对旋风机效率为75%。  相似文献   
183.
肖中云  缪涛  陈波  江雄 《航空学报》2018,39(6):121744-121744
尖头旋成体和船尾形状是子弹、炮弹及火箭弹等抛射体上常用的布局形式。研究表明船尾布局具有减小底部阻力、增大射程的作用,但此时旋成体的马格努斯效应增大,对运动稳定性产生不利影响。为了解释这种流动现象,对三维旋转弹流场进行了数值模拟,对从亚声速到超声速下的旋成体马格努斯力和力矩进行了分析,重点对标准形状和船尾形状两种底部进行了比较。结果表明,相对于标准形状,在所有来流下船尾形状都起到了增大马格努斯效应的作用,并且马格努斯力和力矩与船尾角成正比。为了揭示其流动机理,选择代表性计算状态对两种布局马格努斯力矩系数分布、边界层厚度分布和边界层位移厚度分布进行了对比分析,结果表明,在亚跨声速下船尾马格努斯效应由绕拐角的加速流动引起,使当地压力系数幅值增大;在超声速下船尾马格努斯效应由船尾段的气流膨胀引起,使旋成体左右两侧的边界层位移厚度畸变增大。上述两种效应都使马格努斯力矩增加,对于亚声速流动来说,该效应发生在柱段与船尾段连接位置;对于超声速流动来说,该效应发生在连接点以后的船尾段上。当来流速度在声速点附近时,上述两种效应都可能发挥作用,使船尾形状的旋成体马格努斯效应大幅增加。  相似文献   
184.
畅然  刘高文  余祥仙  冯青 《推进技术》2022,43(4):224-233
为了得到高转速转静盘腔流动换热实验中的相似准则,在定几何、变物性、可压缩和有耗散的情况下,对转静盘腔中的控制方程进行无量纲化,得到了除无量纲位置外的8个无量纲准则数.并以高转速转静盘腔模型为基础,采用数值方法对影响发动机工况(高温)和实验工况(常温)换热相似性的主要无量纲准则数进行了研究.研究表明:流动雷诺数、旋转雷诺...  相似文献   
185.
祖国君  陈矛章 《航空学报》1992,13(5):304-308
对雷诺应力方程中的旋转项进行分析后给出比较合理的模化关系。通过湍流的生成项、耗散项以及旋转项的局部平衡,建立了一个包含旋转矢量在内的各向异性的三维湍流模型。该模型对三维性较弱的剪切流是适切的。对旋转螺旋面及压气机转子叶片上的三维旋转湍流边界层进行了计算。计算结果与实验和C-S模型计算结果比较表明,该模型对近壁参数的预测能力有所改善。另外,该模型形式简单,从表达式本身来看,它相当于Bradshaw模型在三维问题上的推广。  相似文献   
186.
彭志军  李彬  叶彬 《航空学报》2009,30(6):1012-1016
推导了某型飞机尾起落架主支柱转角与缓冲器行程的关系,以及尾起落架主支柱转角与轮轴倾角之间的关系,并指出在停机载荷下,尾起落架轮轴倾角受到主支柱转角的影响。将某型飞机与它同类型飞机尾起落架的转弯情况进行了比较,发现某型飞机尾起落架转弯困难的原因是:在停机载荷下,缓冲器压缩量较大,轮叉转动较小的角度就可以导致轮轴与地面之间产生较大的倾角。在满足缓冲性能的基础上,将某型飞机的尾起落架缓冲器重新进行了充填,提高其充气压力,减少灌油量,使尾起落架缓冲器在停机载荷下的压缩量为0。缓冲器经过重新充填后,在停机载荷下,该型飞机尾起落架轮轴与地面的倾角始终为0°,机轮垂直地面,即使在小转弯半径条件下,牵引转弯和首飞滑跑转弯时,尾起落架机轮左右转动也很灵活。改变该飞机尾起落架缓冲器充填参数后,解决了转弯困难的问题。  相似文献   
187.
对航空发动机叶片采用电火花打出气膜冷却孔后产生的毛刺,用传统的加工方法难以去除,利用交变旋转电磁场带动微细磁针旋转与气膜冷却孔发生碰撞可有效去除叶片气膜冷却孔的毛刺。从理论上分析了磁力研磨法的工作原理、磁力研磨过程中磁针的运动方式以及影响磁力研磨加工效率的因素,并对气膜冷却孔进行磁力研磨抛光试验;采用3D超景深显微镜观察叶片气膜冷却孔研磨前后表面微观形貌的变化。试验结果表明:利用磁力研磨法可以有效去除叶片气膜冷却孔的毛刺,使表面形貌得到改善,满足工件的使用要求。  相似文献   
188.
空间目标三维成像可为目标的特征提取、分类与识别提供重要依据。基于L型三天线干涉成像原理,提出了一种宽带雷达条件下空间自旋目标干涉三维成像方法。首先,分析了雷达发射线性调频(LFM)信号条件下,空间自旋目标在距离-慢时间平面上的成像特点,建立了基于距离-慢时间平面的空间自旋目标干涉三维成像模型;其次,针对建立的干涉三维成像模型中,不同散射点的回波在距离-慢时间平面上会相互交叠的问题,对回波曲线分离、交叉点处理以及一维距离旁瓣的影响等进行了讨论,并给出了解决方法,从而获得目标三维图像。与已有方法相比,该方法可有效克服单基雷达三维成像无法获得目标各散射点真实三维位置以及在双/多基雷达三维成像时多部雷达回波联合处理较困难的问题。最后,仿真实验结果验证了所提方法的有效性。  相似文献   
189.
为提供某型对转发动机低压转子临界转速的设计和调整的理论依据,开展了该转子的临界转速随支承刚度和轴向位置变化规律的研究.以该转子为研究对象,采用有限元法建立了转子动力特性的计算模型,基于不同的支承刚度和轴向位置,运用转子动力学分析软件SAMCEF/ROTOR对低压转子的前4阶临界转速进行了系统的计算分析,揭示了低压转子前4阶临界转速随支承刚度和轴向位置的变化规律.结果表明:支承刚度对低压转子的临界转速有显著影响,而支承轴向位置对临界转速的影响较小.  相似文献   
190.
复杂旋转盘轴腔两相流动与传热数值模拟   总被引:1,自引:0,他引:1  
研究了航空发动机空气系统和润滑系统中复杂的旋转盘腔和旋转轴腔内油气两相流动与传热的数值计算方法,分析了其流动传热特性.以典型小型涡扇发动机的风扇轮盘前腔、风扇轮盘后腔、轴流轮盘前腔、前轴承腔、相关连接气路等组成的多进口、多出口的旋转盘轴腔为对象,研究了用Mixture模型和Eulerian模型计算该系统的速度场、压力场、温度场的方法.结果表明:在相同的计算条件下,两种模型计算的速度场基本一致;两者计算的压力场只在轴流轮盘前腔略有差别,Eulerian模型计算的该腔压力约为Mixture模型计算值的93%;Mixture模型得到温度场较高,由Eulerian模型计算的前、后轴承温度分别约为Mixture模型计算值的93%和94%;Mixture模型计算经济性较好,其迭代一步所需时间约为Eulerian模型的63%.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号