首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   77篇
  国内免费   91篇
航空   241篇
航天技术   234篇
综合类   28篇
航天   230篇
  2024年   3篇
  2023年   14篇
  2022年   9篇
  2021年   26篇
  2020年   25篇
  2019年   31篇
  2018年   29篇
  2017年   23篇
  2016年   19篇
  2015年   29篇
  2014年   56篇
  2013年   40篇
  2012年   46篇
  2011年   61篇
  2010年   42篇
  2009年   36篇
  2008年   27篇
  2007年   30篇
  2006年   40篇
  2005年   27篇
  2004年   21篇
  2003年   12篇
  2002年   17篇
  2001年   19篇
  2000年   15篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
排序方式: 共有733条查询结果,搜索用时 31 毫秒
201.
This study aims to investigate solar radiation pressure acting on the spherical geodetic satellites, Ajisai, LAGEOS-1, and LAGEOS-2. The solar radiation pressure coefficients (CR) are derived in two independent ways: (a) through precise orbit determination (POD) using satellite laser ranging (SLR) data, and (b) through modeling using the optical properties of the satellite surface material. The average CR value of Ajisai (1.039), as calculated from the time series of CR POD estimates every 15?days, is consistently smaller than those of LAGEOS-1 (1.140) and LAGEOS-2 (1.103). This difference can be explained by the fact that the surface of Ajisai is mostly covered by mirrors. The Ajisai CR values estimated by POD show remarkable semi-annual variation, which disagrees with the results of a previous study (Sengoku et al., 1995) predicting that the CR of Ajisai varies almost annually. We attribute this semi-annual variation to two physical reasons: the non-spherical additional cross-sectional area due to the “attached fitting ring” and the low reflectivity of the surface material in the polar regions. Furthermore, the solar radiation pressure acting on Ajisai varies annually in a direction perpendicular to the sun-satellite vector. Finally, the two independent CR values of Ajisai agree more when we assume a total solar irradiance of 1361?W/m2, whereas the value 1367?W/m2 has been commonly used in POD.  相似文献   
202.
Global Navigation Satellite System (GNSS) has been widely used in many geosciences areas with its Positioning, Navigation and Timing (PNT) service. However, GNSS still has its own bottleneck, such as the long initialization period of Precise Point Positioning (PPP) without dense reference network. Recently, the concept of PNTRC (Positioning, Navigation, Timing, Remote sensing and Communication) has been put forward, where Low Earth Orbit (LEO) satellite constellations are recruited to fulfill diverse missions. In navigation aspect, a number of selected LEO satellites can be equipped with a transmitter to transmit similar navigation signals to ground users, so that they can serve as GNSS satellites but with much faster geometric change to enhance GNSS capability, which is named as LEO constellation enhanced GNSS (LeGNSS). As a result, the initialization time of PPP is expected to be shortened to the level of a few minutes or even seconds depending on the number of the LEO satellites involved. In this article, we simulate all the relevant data from June 8th to 14th, 2014 and investigate the feasibility of LeGNSS with the concentration on the key issues in the whole data processing for providing real-time PPP service based on a system configuration with fourteen satellites of BeiDou Navigation Satellite System (BDS), twenty-four satellites of the Global Positioning System (GPS), and sixty-six satellites of the Iridium satellite constellations. At the server-end, Precise Orbit Determination (POD) and Precise Clock Estimation (PCE) with various operational modes are investigated using simulated observations. It is found out that GNSS POD with partial LEO satellites is the most practical mode of LeGNSS operation. At the user-end, the Geometry Dilution Of Precision (GDOP) and Signal-In-Space Ranging Error (SISRE) are calculated and assessed for different positioning schemes in order to demonstrate the performance of LeGNSS. Centimeter level SISRE can be achieved for LeGNSS.  相似文献   
203.
摘要: 扩展卡尔曼滤波(EKF)的估计精度受限于测量噪声统计特性的准确程度,如果敏感器测量噪声方差偏离其标称值,将会对滤波性能产生不利影响.尽管自适应扩展卡尔曼滤波(AEKF)能够对测量噪声方差进行估计,但是,噪声特性准确的情况下,AEKF的性能往往不及传统EKF.针对上述问题,本文提出一种并行模型自适应滤波(PMAF),基于特定的自适应率将EKF和AEKF结合起来,使得在先验信息准确的情况下,EKF在状态估计中起主导作用;相反,在实际噪声方差偏离标称值时,令AEKF起主导作用.这样,即能有效削弱测量噪声统计特性不确定性对滤波性能的影响,又能确保正常情况下的估计精度.以空间目标相对位姿估计为例,通过数学仿真对EKF、AEKF和PMAF进行了对比研究,表明所提算法的综合性能优于传统方法.  相似文献   
204.
本文对李雅普诺夫方程AX-XB=C及(A+δA)(X+δX)-(X+δX)(B+δB)=C+δC的解X及X+δX给出了相对误差‖δx‖/‖X‖的一个上界。  相似文献   
205.
在Banach空间中.引进了一种新的逼近非扩张映像不动点的复合隐迭代格式。证明了一些弱收敛和强收敛定理。并给出了相对收敛率的估计。本研究结果改进了已有同类的结果。  相似文献   
206.
殷建丰  贺泉  韩潮 《航空学报》2011,32(2):311-320
采用基于相对轨道要素的方法,建立了计算碰撺概率的数学模型.在二体圆轨道条件下,推导验证了与基于Clohessy-wiltshire(C-W)方程的碰撞模型的等价关系,并解决了C-W方程存在的若干问题.在航天器近距离相对运动构型设计中提出了基于相对轨道要素的碰撞分析方法,突出了相对轨道要素在构型设计以及碰撞分析中的作用....  相似文献   
207.
王建刚  董新民  薛建平 《飞行力学》2011,29(2):33-36,40
针对着陆过程中飞机对象的非最小相位特性,设计了基于稳定逆的飞机纵向自动着陆控制律.通过求解系统内部动态的有界解,设计了系统对于期望轨迹的稳定逆;基于相对阶的概念设计了光滑、连续的进场着陆期望轨迹.由稳定逆产生期望控制输人和状态轨迹,反馈控制器克服飞机参数不确定性及外界干扰.仿真结果表明,所设计的自动着陆控制律具有精确跟...  相似文献   
208.
介绍了环境-1A卫星上装载的新型有效载荷超光谱成像仪的工作原理。指出我国使用超光谱干涉仪尚处于试验阶段,对在轨数据处理方法还需要完善。文章针对干涉仪的数据立方体特性提出一种空间维的基于统计方法的在轨干涉数据相对辐射定标处理方法,并通过对卫星实际在轨数据的对比处理来验证其处理效果。结果表明,相对辐射定标处理可以修正CCD响应的不均匀性和入射光场的不均匀性,减小非线性相位偏移,提高复原光谱的精度。  相似文献   
209.
针对我国高分辨率空间对地观测专项的发展需求,文章在星载多普勒无线电定轨定位(Doppler Orbitography and Radio-positioning Intergrated by Satellite,DORIS)系统的实时定轨算法和流程验证基础上,进行了应用背景限制下的模型简化研究,用数字信号处理器(DSP)实现并验证了其星载实现的可行性和有效性。首先介绍法国星载实时定轨软件(DORIS Immediate Orbit Determination by Embarked,DIODE)及定轨原理,给出星载实时定轨算法的流程。通过网站下载的DORIS接收机搭载星数据,对星载多普勒实时定轨算法的观测量修正部分和卡尔曼滤波定轨算法进行验证。针对星载实现的计算简化要求,对算法中计算量较大的地球非球形引力摄动和章动模型进行研究,对比不同模型复杂度对定轨结果的影响,为定轨算法模型的选取提供依据。最后将移植到DSP的程序运行结果与个人计算机下的仿真结果进行了对比,验证其星载实现满足精度要求,同时运行时间满足实时性要求。对如何提高实时定轨算法的性能,文章给出了后续应用的改进方向。  相似文献   
210.
基于星间链路的分布式导航自主定轨算法研究   总被引:3,自引:1,他引:3  
针对脱离地面支持自主定轨的导航应用需求,提出了基于星间链路双向测距的自主导航定轨算法。文章分析了导航星座星间链路双向伪距测量模型,给出了分布式自主定轨数据流程,设计了导航星座基于星间链路分布式自主定轨算法。根据国际卫星导航服务组织公开的真实GPS系统事后精密星历,对本文设计的自主定轨算法进行仿真验证,结果表明:采用该设计的自主导航算法在自主定轨90天末期,用户测距误差(URE)达到30 m左右,验证了该设计的自主定轨算法具有较高的自主定轨精度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号